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CHAPTER 1 – INTRODUCTION 

1.1 Overview and Objectives 

Despite the many clinical advances in cancer treatment, lung cancer still remains 

one of the most prevalent cancers worldwide with 1.8 million new cases and 1.6 million 

deaths occurring in 2012.1 It remains as the second leading cancer in estimated new 

cases and the leading cause of cancer related deaths in the United States for both men 

and women.2 Most cases (57%) are diagnosed at the advanced stage of the disease 

(metastasized to other sites) which has kept the overall 5-year survival rate at diagnosis 

to 18.6% with half of those initially diagnosed expected to die within the year.3-5 Those at 

the metastatic stage (57% of cases) have only a five-year survival rate of 4.7%. Only a 

small decrease in lung cancer incidence and deaths (2.1% and 2.7%) has been seen in 

the past decade, which negatively compares with other forms of cancer such as prostate 

cancer which as seen a 10% annual decrease in incidence from 2010-2014 with 

colorectal cancer incidence rates declining 2-3% annually from 2005-2014.2, 3 Therefore, 

new therapeutic strategies to manage lung cancer are greatly needed.  

Not only does primary lung cancer pose a serious challenge, secondary lung 

tumors that metastasize to the lungs form other primary tumors can be found in 30-55% 

of all cancer patients.6 This is an indicator of advanced stages of cancer, in which 

treatment for such cases proves to be more challenging. Of these cancers, breast cancer 

(the second- leading cause of cancer-related deaths for women and 1st in estimated new 

cases)2 commonly metastasizes to the lung;7, 8 it is this metastatic stage –  the metastases 

themselves – and not the primary tumor that is the true leading cause of death in such 

patients.9, 10  Metastatic relapses to the lungs (primary or secondary)  is observed in 
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majority of patients, and chemoresistance that develops in most cases after clinical 

treatment including chemotherapy is what ultimately becomes the leading cause of death 

for these patients.6, 9, 11 Most metastasis cannot be cured.12 Therefore, current clinical 

intervention most often fails in these cases leading a significant need to propose 

alternative pathways for treatment.  

Current therapies often are used to slow tumor growth of alleviate symptoms.12 

The type of treatment strategy is highly dependent on tumor type and how advanced the 

stage of the cancer. For non-small cell lung cancer (comprises 85% of lung cancer 

cases)13 the most common treatment is surgery, radiation therapy, or chemotherapy, 

which can be given alone or in combination.14 In the advanced stages, radiation therapy 

chemotherapy, targeted therapy, or immunotherapy are used alone or in combination.14 

Usually a combination of two drugs is used to increase therapeutic effectiveness for 

chemotherapy intervention.11  Current therapies for breast cancer, as with lung cancer, 

also include surgery, radiation therapy, targeted therapy, and chemotherapy alone or in 

combination.15 In stage IV metastatic breast cancer, where secondary lung tumors can 

form, chemotherapy is the main treatment given.15 This includes triple-negative breast 

cancer, in which there are currently no effective targeted therapies that have yet been 

developed.15, 16 Also due to the unpredictability of metastasis development, 

chemotherapy is normally given as an adjuvant therapy in 80% of breast cancer cases.10  

Chemotherapy is the main modality for treatment of metastatic cancers as well. 

In recent years, significant advances in immunotherapy, especially in the field of 

immune-checkpoint inhibitors, has brought new hopes in clinical treatment for patients 

who suffer from primary and secondary lung tumors with several immune-checkpoint 
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inhibitors approved by FDA.17 Non-small cell lung cancer (NSCLC), which was once 

considered untreatable with immunological approaches, such as cancer vaccines, have 

now seen huge clinical benefit when in the advanced states of the disease with the 

treatment of immune checkpoint inhibitors.18, 19 However, only a small portion of the 

patients show response to this treatment, which includes a range of 15-25% of patients 

responding to immune various immune checkpoint inhibitors to cytotoxic T-lymphocyte–

associated protein 4 (CTLA-4) receptor, programmed death-1 (PD-1), or programmed 

death ligand-1 (PD-L1).20, 21 This may be due to the heterogenous nature of NSCLC 

tumors and various resistance mechanisms that are not yet clearly understood.19, 20 This 

type of treatment has also led to immune-related adverse events in which the 

pathophysiology remains unknown, but may be related to the role of immune checkpoints 

in immunologic homoeostasis.17 However, new alternative understanding in the tumor 

microenvironment (TME), and the search for alternative targets to mediate the 

immunosuppressive nature within the TME have kept advances in immunotherapies 

introduced in clinical trials.19, 20 

While new targets are being identified and issues related to long term side effects  

are still being understood, chemotherapy reamins a significant part of treatment for 

primary and secondary lung cancer patients alone or in combination with 

immunotherapy.14 Since chemotherapy is a commonly used treatment modality in most 

advanced forms of cancers, including the metastatic form, and chemoresistance develops 

in most cases, chemoresistance is truly a formidable problem to be addressed. Acquired 

chemoresistance from treatment of tumors with various chemotherapeutics leads to 

cancerous cells developing multidrug resistance (MDR).22, 23 MDR remains one of the 
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major issues still facing effective cancer treatment.23 Multiple genetic and environmental 

factors with tumors and the surrounding tumor microenvironment (TME) lead to the 

development of MDR and can vary from tumor to tumor.24 Many of the MDR mechanisms 

include increased drug efflux out of cancerous tumors, alterations to drug via cellular 

metabolic pathways inactivating the drug, alteration in drug targets making drug 

ineffective, reduced apoptosis, increased DNA repair, compartmentalization of drugs, 

changes within the cell (genetic or epigenetic) that can influence the surrounding TME, 

presence of cancer stem cells, and molecular and genetic heterogeneity of cancerous 

cells within the tumor.22-24 Most MDR  tumors utilize more than one of these resistant 

mechanisms simultaneously.24 Due to this complexity in various MDR mechanisms, new 

drug delivery strategies to overcome these challenges are currently being developed. 

This has led to the use of a variety of nanotechnologies in  the hope to overcome 

limitations seen by common chemotherapeutic treatments.24 

Nanotechnologies, such as polymeric nanocarriers (PNCs), have great potential in 

enhancing clinical treatment of cancers by improving drug availability and reducing 

systemic side effects by specific targeting of therapeutics to tissues of interest, which has 

proven to enhance clinical efficacy.25-27 Improved quality of life and longevity of patients 

has been demonstrated when specific targeting is used to selectively deliver 

chemotherapeutics towards malignancies, which has pushed many nanomedicines into 

the clinical phases for treatment of a variety of cancers.27, 28 Many PNCs can also be 

multifunctional, allowing for enhancement in many aspects of drug delivery including 

specific targeting, enhanced drug bioavailability, sustained drug release, decreased drug 

clearance, delivery of multiple drugs, controlled release of drug, and increased cellular 
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uptake, thus, enhancing overall drug efficacy and overcoming many resistance 

mechanisms to help address MDR.27-31  

Dendrimer nanocarriers (DNCs) represent a promising technology for delivery of 

chemotherapeutics.32 DNCs are tree-like polymers that have a central core with repeating 

branches.33-35 They have unique properties such high monodispersity,33 small nm-scale 

range,35 high density of surface groups that can be modified to increase solubility of 

therapeutic conjugated to the dendrimer,33 multifunctionality for attachment of other 

targeting moieties or solubilizing groups,34 controlled drug release,34 controlled and 

reproducible pharmacokinetics,36 enhanced targeting, and reduced systemic side effects 

to increase overall therapeutic efficacy.34 These unique properties make DNCs 

particularly attractive choices for the delivery of both small molecules and biologics in the  

treatment of advanced lung cancers and secondary lung tumors. 

DNCs can be synthesized via convergent of divergent synthesis strategies, and 

depending on the monomer chosen for synthesis, various classes of dendrimers have 

been formed including polyamidoamine (PAMAM), polypropyleneimine (PPI), poly-L-

lysine (PLL), poly(glycerol-co-succinic acid), melamine, poly(glycerol), 2,2-

bis(hydroxymethyl)propionic acid (Bis-MPA), poly(ethylene glycol) (PEG), and others.37 

Of those DNCs that have been formed, recently, polyester dendrimers made from Bis-

MPA have emerged a promising dendrimer chemistry, particularly for their 

biodegradability and decreased toxicity compared to other chemistries such as PAMAM 

dendrimers.38 A significant amount of work on the use of Bis-MPAs for biomedical 

purposes has been more recently published.39-41 Dendrons (Greek term for trees), is a 

class of dendritic architectures representing a branch or dendritic  wedge-shaped 
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fragment in the tree-like structure.42, 43 Malkkoch et al. has explored the synthesis of bis-

MPA polyester dendrimers by the conjugation of dendrons.44 The conjugation of surface 

modified dendrons can be used to achieve controlled, stereo-specific bifunctionality so as 

to further modulate their interaction with the physiological environment.45 Surface 

functionality plays a key role in in vitro cellular internalization and intracellular trafficking. 

It is known that the endocytic internalization and intracellular trafficking within cells can 

affect drug release and overall therapeutic performance as well as the biodistribution and 

pharmacokinetics,46 as seen in methotrexate conjugated to cationic vs anionic 

dendrimers.47  Consequently, choosing a desired surface functionality as well as linker 

between drug and dendrimer for conjugation can affect overall in vitro and in vivo 

therapeutic performance. Asymmetric dendrimers have been utilized for DOX delivery via 

hydrazone bond between dendrimer and DOX and polyethylene oxide conjugated to other 

side, and demonstrated less toxicity than free drug in vitro, however, demonstrated 

efficacy in vivo similar to that of Doxil.40 Nevertheless, little is known on how asymmetry, 

varying surface chemistries, and route of delivery can affect overall therapeutic 

performance against lung tumors, especially in context of MDR. While the synthesis 

remains complex, advantages in their unique bifunctionality makes them potentially 

attractive and unique options for treatment of such complex disease states such as MDR 

and metastatic tumors.  

Other strategies can be combined with drug conjugation to DNCs to help address 

MDR. The ability to target specific intracellular organelles can be used to repurpose 

cytotoxic drugs in cancer treatment. Mitochondria are intracellular organelles that 

maintain cellular homeostasis.48 Mitochondria in cancerous cells are functionally and 
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structurally different as compared to normal cells, and have been implicated in tumor 

initiation and progression.49 Since mitochondria regulate energy metabolism in the cell, 

production of reactive oxygen species (ROS), and apoptosis,50 therapies that can alter 

metabolic processes associated with cancer cell survival,51 increase ROS production,52 

induce apoptosis, or disrupt mitochondria integrity53 have the potential to be developed 

as alternative drug strategies for cancer treatment.  Mitochondrial targeting has been 

shown as an effective strategy to overcome MDR via attachment of mitochondrial 

targeting agent triphenylphosphonium (TPP) to small molecule cytoreductive agents.54-57 

Therefore, providing a platform for targeting DNC-drug conjugates toward mitochondria 

has the potential enhance chemotherapeutic outcome and potentially improve strategies 

to address MDR.  

Since acquired MDR can also come from treatment of chemotherapeutics, the use 

of an entirely different strategy, including the delivery of alternative therapeutic molecules, 

like short-interfering RNA (siRNA) can be also utilized alone or in combination to help 

address MDR as it can be used to modulate overexpression and assist in the induction 

of apoptosis.58 One of the main advantages of siRNA therapy is its specificity and 

versatility. It allows for specific targeting of gene of interest without impacting other 

genes/cellular functions. However, one major challenge in such therapies is the ability to 

deliver such biologics intact to the cell cytosol.  Nanotechnology seems to be particularly 

poised as a strategy to be able to address that challenge.59-61 62-64 Therefore, if a specific 

delivery strategy of siRNA is found effective, the versatile use of such strategy can be 

explored for the treatment of variety of gene targets to treat cancers as well as other 

disease states. Several nanoformulations have been explored for the delivery of siRNA 
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for cancer treatment, with some being tested in clinical trials.65 The co-delivery of siRNA 

with chemotherapy for the treatment of MDR has been a focus of many groups 

demonstrating a synergistic effect.58, 66 Of siRNA targets, Bcl-2 and Survivin, genes 

associated with cellular apoptosis pathways found to be upregulated in many tumor types, 

associated with poor prognosis, and found upregulated in MDR cells,60, 66-70  are, 

therefore, great therapeutic targets. For the treatment of lung cancer and secondary lung 

tumors, a viable strategy in which the siRNA (as well as other therapies) can be delivered 

locally to the lungs directly via the pulmonary route could lead to significant improvement 

in bioavailability of siRNA.  

Oral inhalation (OI) formulations for the treatment of lung metastasis and lung 

cancer remains a viable strategy to enhance overall efficacy of treatment. Since most 

chemotherapeutics used in lung cancer treatment are delivered intravenously (IV),71 

multiple unwanted side effects are associated with such cytoreductive therapies. This 

problem is compounded by the fact that only a small fraction of dose actually makes to 

the lungs, with typical doses being very high, which may force patients to discontinue 

treatment. The use of OI can improve in overall success in treatment by increasing dose 

to target site while reducing systemic exposure, thus lowering side effects.72, 73 Higher 

bioavailability of therapeutic can be found as well by lower enzymatic activity in the lungs 

compared to the first-pass hepatic metabolism when delivered IV.73, 74 Higher amount and 

bioavailability of drug also allows to lower required dose for administration.75 OI can also 

be utilized as strategy to deliver into systemic circulation non-invasively due to the large 

alveolar surface area an thin air-blood epithelial barrier73 8, 76. When combined with DNCs, 

high doses of therapeutic molecules have been found in the lymph nodes upon pulmonary 
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administration, which is a primary site for metastases from lung cancer, and very hard to 

target when drug is administered systemically.77, 78 Therefore, the use of OI strategy for 

delivery of therapeutics for the treatment of lung cancer and lung metastasis remains 

highly relevant. The use of such a strategy can also be used for the delivery of 

immunotherapies. Recent advances in immunotherapy for lung cancer treatment highlight 

the potential of the pulmonary route. For example immune checkpoint inhibitors alone or 

in combination with colony-stimulating factor 1 receptor inhibitors (CSF1Ri) have been 

shown very effective in the treatment of non-small cell NSCLC.79 However, both treatment 

strategies may induce liver toxicity,20 and the ability to reduce dose and target disease 

tissue may prove essential to broaden the applicability of such combination treatments. 

Immunotherapy with CSF1R inhibitors has recently been investigated in pre-

clinical studies and clinical trials for treatment of a variety of tumors demonstrating great 

promise and providing an alternative strategy of treatment from current chemotherapy. 

CSF1Ri work to inhibit CSF1R, a critical receptor found particularly on macrophages.20, 

80 Tumor associated macrophages (TAMs) are one of the main immune cells found within 

the TME.  TAMs can be described having two main polarizing phenotypes: M1 and M2.81 

M1 macrophages are immunostimulatory while M2 are immunosuppressive.81 M2 TAMs 

are known to promote tumor initiation, proliferation, metastasis, angiogenesis, modulate 

T cell responses, and correlated with resistance to conventional therapies. 20, 80 CSF1R 

signaling initiates myeloid cells to differentiate into M2 phenotype. M2 CSF1R+ cells are 

correlated with poor survival in a variety of tumor types including lung cancer.20, 82 CSF1Ri 

can modulate the expression of M2 phenotype by selectively reducing the number of M2 

and/or repolarization from M2 into M1 phenotype, therefore, increasing M1/M2 ratio.83 A 
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high M1/M2 ratio has been shown to correlate with increased survival for patients as a 

monotherapy or combination therapy.20, 80 Therefore, the direct delivery of CSF1Ri to the 

tumor site – lung cancer tumors or secondary lung tumors – by pulmonary delivery could 

enhance overall treatment efficacy by all advantages discussed previously, as a 

monotherapy or in combination with other treatments.  

Within this context, the objectives of this dissertation are as follows:  

Objective # 01: Develop mitochondrial-targeting dendrimer nanocarriers 

(DNCs) as a platform for the repurposing of chemotherapeutics with potential 

applicability in the treatment of MDR in primary and secondary lung cancer. 

Mitochondria play a crucial role in cellular homeostasis, including production of cellular 

energy, production of reactive oxygen species (ROS), and intrinsic apoptosis.48, 50, 84, 85  

Alterations in mitochondria occur in cancerous cells in which lead mitochondria to become 

dysfunctional or “resistant.”48, 67 Changes in cellular metabolism from aerobic respiration 

to aerobic glycolysis – an effect known as the Warburg effect – and alterations in intrinsic 

apoptotic pathways – impaired apoptosis – occur in these mitochondria.48 Since 

mitochondria play crucial roles in cell survival and proliferation in cancerous tumors, 

therapeutic agents that can be directed toward the mitochondria have great potential in 

elimination of such tumors49, 86 by altering metabolic processes essential in cancer cell 

survival,51 leading to mitochondrial destabilization to induce apoptosis.53  This direct 

targeting of therapies toward the mitochondria can also help overcome MDR, a major 

obstacle in current chemotherapy treatment by redirecting therapeutics, for example, 

whose nuclear target may have been compromised due to MDR, allowing the repurposing 

of that same molecule.67 We, therefore, designed a DNC platform to target the 
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mitochondria. We selected a known mitochondriotropic agent, the delocalized lipophilic 

cation triphenylphosphonium (TPP) ion, that was conjugated directly to  amine-

terminated, generation 4, poly(amidoamine) (PAMAM) dendrimer (G4NH2-TPP) 

nanocarriers or to G4NH2 through a polyethylene glycol (PEG) linker (G4NH2-PEGTPP). 

The synthesis, in vitro cellular uptake, cytotoxicity, and mitochondrial colocalization of 

conjugates was investigated. The conjugation of TPP to various nanocarriers for 

chemotherapeutic delivery87-91 or to the drug/therapeutic themselves52, 54-57, 92 has 

demonstrated increased cytotoxicity and enhanced efficacy in vitro87, 88, 90, 91, anti-tumor 

activity in vivo,87, 88, 93 and the ability to overcome drug resistance.54, 56, 57, 94.  The details 

on the studies of the G4NH2-TPP modified and G4NH2-PEGTPP modified dendrimers will 

be further discussed in the following chapters.  

Objective # 02: Develop siRNA/TPP-DNCs as a platform for pulmonary 

delivery of siRNAs with potential applicability in the treatment of MDR in primary 

and secondary lung cancer. The inactivation of apoptosis through the increase in anti-

apoptotic genes expression including is one of the known mechanisms employed in MDR 

cells.22-24 Bcl-2 and Survivin overexpression have both been implicated with poor survival 

and drug resistance in many cancer types including lung and breast cancer.22, 66, 67, 69 

Therefore, the downregulation of these genes can induce a synergistic interaction with 

other therapies66, 95 and potential in overcoming MDR. However, the delivery of siRNA to 

the lungs has remained a challenge including finding efficient and safe vectors for siRNA 

delivery to lungs, extracellular and intracellular barriers that prevent efficient siRNA 

transport to target lung tissues,96-99 and challenges for their formulations into portable oral 

inhalation devices – including pressurized metered dose inhalers (pMDIs) and dry 
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powdered inhalers (DPIs). Therefore, we designed an efficient platform for the delivery of 

siRNA to the lungs. Firstly, an TPP-modified G4-NH2 PAMAM dendrimer was synthesized 

and complexed with siRNA (TPP-dendriplexes) to enhance the transfection efficiency of 

siRNA in an in vitro model of pulmonary epithelium. Secondly, particle engineering 

strategies for the efficient formulations of such complexes for pMDIs and DPIs were 

developed. The details of synthesis, characterization, in vitro gene knockdown and 

inhalation formulations will be further described in the following chapters.  

Objective # 03: Develop novel asymmetric polyester dendrimers for 

increasing efficacy of chemotherapeutics with potential applicability in the 

treatment of MDR in primary and secondary lung cancer. Despite the many 

advantages that PAMAM dendrimers possess, they have some limitations in terms of 

toxicity well-documented in various cell lines.100-103 PAMAM dendrimers are also not 

degraded under physiological conditions.104 Therefore, a push for a less toxic and more 

biodegradable option of dendrimers have led to the design of dendrimers made from 2,2-

bis(hydroxymethyl)propionic acid (Bis-MPA) – a polyester based material with 

demonstrated decreased toxicity and biodegradability.38 Also the requirement of 

dendrimers to become multifunctional has led to the design of heterobifunctional 

(asymmetric) dendrimers for biomedical applications.45 However, the synthesis of such 

asymmetric remains a challenge.45 There are no studies that have shown the effect of 

asymmetry in the role of cellular internalization and intracellular trafficking and how that 

may play a role in drug internalization, release, overall efficacy, and intracellular targeting. 

Because drug conjugation may alter the interaction of the DNC with the physiological 

environment, the ability to create highly controllable structures through dendrons may 
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provide for a pathway for enhanced cellular targeting and yet ability to co-locate with 

desired organelle, and thus yet another strategy in the repertoire to target MDR.105 In 

order to realize such potential, we designed a facile way for modification of surface of 

polyester Bis-MPA dendrons with various surface groups containing different surface 

properties (cationic, anionic, neutral hydrophilic, hydrophobic). We combined this 

dendron side with another dendron side where a power cytoreductive agent broadly used 

in chemotherapy treatment of a variety of tumors (doxorubicin = DOX) is conjugated 

through a degradable peptide bond. The final product is an asymmetric dendrimer 

containing DOX on one side and varying surface chemistries on the other. The details on 

the synthesis and characterization of dendrons and dendrimers will be discussed in the 

following chapters.   

Objective # 04: Develop pulmonary delivery strategy for TAM-targeting 

immunotherapy with potential applicability in the treatment of MDR in primary and 

secondary lung cancer. Chemotherapy remains the main modality to treat metastatic 

cancers. However, MDR is typically developed along cytoreductive treatment.22 IV 

delivery of small molecule chemotherapeutics and other therapeutics used in the 

treatment primary and secondary lung tumors also leads to unwanted side effects, 

limitations in drug dose and bioavailability, and small portion of drug making to the lung 

tumor site.73-75, 106 Therefore, alternative types of therapies and routes of delivery to treat 

these tumors may are critically needed to bring about innovations that may help address 

MDR and to improve overall treatment efficacy. We have thus tested a combination 

chemo- and immuno- therapy strategy for the treatment of lung cancers that combines a 

small molecule CSF1Ri and a cytoreductive agent.  We established an in vivo mouse 
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model of metastatic breast cancer to the lungs and tested the efficacy of such combination 

therapy upon local delivery to the lungs. This study will be described in detail in the 

following chapters. 

 The rest of this document is organized as described next. In Chapter 2 we present 

a literature review about the following topics: lung cancers and other common cancers 

that metastasize to the lung; current treatment strategies for primary and secondary lung 

tumors; challenges in MDR; dendrimers’ role as effective polymeric nanocarriers for 

therapeutic delivery, mitochondrial targeting of chemotherapeutics as an effective 

strategy for primary and secondary lung tumors and MDR; siRNA delivery to lungs and 

potential use in overcoming MDR; advantages in direct pulmonary delivery of for 

treatment of lung tumors; and immunotherapy to modulate tumor associated TAMs as a 

treatment strategy.   

 In Chapter 3 we discuss the mitochondrial targeting ability of TPP-modified G4-

NH2 PAMAM dendrimers. The goal of this work was to establish a platform for 

mitochondrial targeting that may open up possibilities for drug repurposing in MDR. 

Conjugation of TPP was either directly conjugated to the surface of G4-NH2 PAMAM 

dendrimer (G4NH2-TPP) or via a PEG linker (G4NH2-PEGTPP). The synthesis and 

characterization are fully described. Their biological activity was tested at various surface 

densities of TPP or PEGTPP in an in vitro model of human alveolar carcinoma cell line 

(A549). This included the testing of cellular uptake by flow cytometry, cytotoxicity by MTT 

assay, and mitochondrial colocalization by confocal microscopy in vitro. The main effects 

on the type of TPP conjugation (direct or through a PEG linker) were assessed for each 

dendrimer conjugate. This chapter is based on the published manuscript:  Bielski, E. R., 
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Zhong, Q., Brown, M., & da Rocha, S. R. Effect of the conjugation density of 

triphenylphosphonium cation on the mitochondrial targeting of poly (amidoamine) 

dendrimers. Molecular Pharmaceutics, 2015,12, (8), 3043-3053.  

In Chapter 4 we discuss the formation and oral inhalation formulations of TPP-

dendriplexes as a siRNA delivery strategy to the lungs. siRNA delivery to the lungs 

remains a huge challenge due to the poor bioavailability of siRNA when administered IV 

and difficulty in maintaining siRNA integrity and activity when formulating for use in 

portable inhalation devices.107 G4NH2 PAMAM dendrimers were modified at various TPP 

densities (G4NH2-TPP) to enhance in vitro transfection ability when delivery siRNA to an 

in vitro model of the pulmonary epithelium. G4NH2-TPP dendrimers were complexed with 

siRNA to form TPP-dendriplexes and were characterized by light scattering and SEM. 

Varying TPP densities and N/P ratios were analyzed. The complexation efficiency of 

various TPP-dendriplexes were assessed by gel electrophoresis and polyanion 

competition assay. The in vitro toxicity and gene knockdown efficiency were evaluated 

against eGFP-expressing A549 cells. TPP-dendriplexes were engineered into micron 

particles utilizing spray drying. These particles were characterized by Light Scattering and 

SEM, their in vitro gene knockdown ability was assessed, and their aerosol characteristics 

for both pMDIs and DPIs was determined by Anderson Cascade Impactor. This chapter 

is based on the published manuscript: Bielski, E., Zhong, Q., Mirza, H., Brown, M., Molla, 

A., Carvajal, T., & da Rocha, S. R. TPP-dendrimer nanocarriers for siRNA delivery to the 

pulmonary epithelium and their dry powder and metered-dose inhaler 

formulations. International Journal of Pharmaceutics, 2017, 527, (1-2), 171-183. 
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In Chapter 5 we discuss the synthesis and characterization of surface 

modifications for polyester Bis-MPA dendrons. Surface modifications of dendrimers have 

been demonstrated to affect cellular internalization and intracellular trafficking in various 

cell lines. Cationic and neutral PAMAM dendrimers were found to be internalized via non-

clathrin, non-caveolae-mediated mechanisms endocytosis., anionic dendrimers were 

seen to be internalized in A549 cells by a caveolae-dependent mechanism108 Hydrophilic 

PEG modification of dendrimers has shown to decrease the rate of cellular uptake of 

dendrimers but does not reach saturation in cellular internalization at short times.78 

Hydrophobic lauryl modifications have been demonstrated to increase internalization of 

G3-PAMAM dendrimers by caveolae-dependent endocytosis and micropinocytosis in HT-

29 cell line,109 and increase transport across Caco-2 cells via transcellular and 

paracellular routes.110 However, little is known about the cellular internalization and 

intracellular trafficking of asymmetric dendrimers, in which critical understanding of these 

pathways has the potential to increase drug efficacy in vitro and in vivo. For example, one 

dendron can be used to carry drug or drug-intracellular targeting agent, while the other 

dendron may lead to enhanced uptake. Also, synthesis of asymmetric dendrimers still 

remains highly complex as well and new protocols may support their development.45 

Therefore, a facile way to modify polyester dendrons is described. The azido-G5-OH (N3-

G5-OH) polyester Bis-MPA dendrons were synthesized and characterized with 

unmodified hydroxyl (-OH), anionic carboxyl (-COOH), cationic (-NH2), hydrophilic PEG 

(-PEG) and hydrophobic lauryl (-LA) functionalities. The synthesis and characterization 

by 1H NMR, MALDI-TOF, and Light Scattering of modified dendrons is described. The 

attachment of DOX via peptide (-GFLG-) and linked to Acet-G5-SA modified dendron is 
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also discussed. The use of click chemistry to conjugate the Acet-G5-OH and N3-G5-OH 

dendrons to form dendrimers as potential strategy for formation of asymmetric dendrimers 

is described.  

In Chapter 6 we describe the pulmonary delivery of a CSF1Ri (PLX3397) for the 

treatment of lung tumors, in this case using an in vivo model of secondary lung tumors 

developed from a murine model of stage IV metastatic breast cancer. The efficacy of 

PLX3397 (PLX) delivered via pulmonary route, also its combination with 

chemotherapeutics (DOX) had not been previously explored. In this study we transduced 

a mouse (Balb/c) breast cancer (4T1) cell line to contain fluorescence and 

bioluminescence vectors (luc-tdtomato-4T1). Cell sorting following by fluorescence 

expression determination by flow cytometry and bioluminescence expression determined 

by IVIS imaging were utilized to establish the cell line. An in vivo, syngeneic (4T1/Balb/c) 

immunocompetent tumor model of lung metastasis was established with the transformed 

cells. The effectiveness of PLX and DOX treatment delivered via pulmonary route was 

assessed in vivo by measurement of tumor burden via IVIS imaging. Macrophage 

polarization induced by PLX was assessed by flow cytometry.  

 In Chapter 7 we conclude the work as we try to unify all the treatment strategies 

discussed above as potential means to address MDR in lung cancers and propose next 

steps that can be taken in each project based on the knowledge acquired during the 

execution of these multifaceted projects.  

1.2 Relevance and Innovation 

The relevance of this work stems from the fact that the development of MDR 

remains the greatest challenge in the management of primary and secondary lung 



www.manaraa.com

18 
 

 
 

cancer.6, 7 Therefore, new therapeutic strategies that can increase efficacy of overall 

treatment are needed. Here we present several different platforms that have the potential 

to treat highly metastatic tumors and overcome MDR. Firstly, mitochondrial intracellular 

targeting of therapeutics has been demonstrated by others to overcome MDR in some 

MDR-cell lines in vitro and enhanced efficacy in vivo - for small molecules only.54-57 We 

are the first group to assess the effect of TPP and PEGTPP density on dendrimers in 

general, and the impact of such modification on their cellular internalization and 

mitochondrial targeting, thus demonstrating their potential as a platform for delivery of 

therapeutics to overcome MDR. We are also the only group to demonstrate the ability of 

dendrimer-TPP conjugates to enhance in vitro transfection ability of siRNA in lung 

alveolar cells and the successful aerosol formulations of such complexes in both pMDIs 

and DPIs. This provides for a strategy for local targeting of siRNA to lungs that can also 

potentially be used alone or in combination to address MDR. We are also the first group 

to synthesize and characterize various surface modifications to N3-G5-OH polyester 

dendrons for the formation of asymmetric dendrimers containing DOX and varying 

surface chemistries. The study of cellular internalization and cellular trafficking on effect 

of drug release and efficacy in vitro and in vivo biodistribution and pharmacokinetics has 

many implications in improving overall polymer-drug design and enhanced treatment 

efficacy in metastatic and MDR tumors. Lastly, we are the first group to test the delivery 

of PLX via pulmonary route as potential treatment of metastatic tumors in the lungs, 

demonstrating potential immunotherapy route by direct pulmonary administration to the 

lungs that can enhance efficacy of treatment in metastatic tumors in the lung as well the 

potential to address MDR.   
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Lung Cancer and Other Common Cancers that Metastasize to the Lung 

 Lung cancer is the second most diagnosed cancer with estimated new cases 

comprising of 13.5% (with 14% for men and 13% for women) with 6.2 percent of the 

population will be diagnosed at some point in their lifetime.2, 3 It  still remains the leading 

cause of cancer-related death in the United States regardless of gender or ethnicity 

comprising of 25.3%  (~155,000 Americans) - 26% for men and 25% for women.2, 3 Lung 

cancer has been the leading cause of death for women since 1987, killing almost twice 

as many woman than breast cancer.111 More lives are lost to lung cancer than colorectal, 

breast, and prostate cancer combined.111 The five-year survival rate after initial prognosis 

is 18.6%.3 There are few to no symptoms in most reported cases of lung cancer, 

therefore, leading most patients being diagnosed at the advanced stage of the disease; 

about 57% of cases diagnosed when lung cancer is in the distant stage (metastasized to 

distant sites) in which the 5-year survival rate drops down to 4.7%.3, 4 Although a slow 

progression in decrease of lung cancer incidence (2.1%) and deaths (2.7%) in the past 

decade, it still remains the top in cancer-related deaths, which can be reflected from only 

6% of government money funded for cancer research is dedicated to lung cancer.2, 3  

Not only lung cancer that remains a critical in terms of cancer-related incidences 

and deaths, metastasis to the lung by other cancer types also remains a major challenge. 

Metastasis is most commonly the final and fatal progressive step in solid tumor 

progression.6, 7 Metastasis is the spread of cancer from the primary (original) tumor site 

that travels through the body and forms a new tumor in another organ or tissue type 

(Figure 2.1A).112 This tumor is known as the metastatic tumor and is the same type of 
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cancer as the primary tumor. The metastatic process includes several steps including: 

cell intravasation, survival in circulation, extravasation to distant organ/tissue site, 

angiogenesis, and uninhibited growth (Figure 2B).6, 8 The molecular mechanisms of the 

primary tumor to metastasize to other organ sites is tissue-specific, and the tendency of 

primary tumors to metastasize to specific organs has been observed for more than a 

century.6, 7 

 Secondary lung tumors and are metastatic tumors found in the lung. These 

secondary lung tumors can be found in 30-55% of all cancer patients, though the 

frequency of these tumors depends on the cancer type of the primary tumor.6 Cancer 

spread to the lungs is often a marker of the disease being advanced. Almost any cancer 

can has the ability to spread to the lungs, however, some more commonly do so and 

Figure 2.1. A) Metastasis. Metastasis in cancer is when primary tumor cells break away 
from initial tumor, travels through the blood or lymph system to form new tumors 
(metastatic tumors) in other tissues or organs within the body;112 B) Steps of 
Metastasis. Several steps are required for metastasis. First, the cell breaks free from 
primary tumor and through the stroma to reach the vasculature - intravasation. Once in 
the bloodstream (or lymph), the cancer cells express certain markers, circulate, and 
distribute to distant sites depending on the interaction of cancer cells and secondary 
organs in which they colonize. After reaching a secondary target organ site, they cancer 
cells can exit the bloodstream, and begin to proliferate by releasing pro-inflammatory 
compounds, inducing angiogenesis, and releasing other growth factors.8  

A B 



www.manaraa.com

21 
 

 
 

include the following: bladder cancer, melanoma, breast cancer, colon cancer, prostate 

cancer, head and neck cancer, thyroid cancer, renal cell cancer, choriocarcinoma, 

testicular cancer, osteosarcoma, Ewing sarcoma, Wilms tumor, Rhabdomyosarcoma, 

and neuroblastoma.6 Of these primary cancers, breast cancer is the leading new 

estimated cases for women in the US in 2018 at 30% (266,120) and 2nd in estimated 

deaths for women – 14% (40,920).2  It metastasizes most commonly to the lymph, bone, 

liver, and lung, in which bone and lung are the most common targets of breast cancer 

metastasis in humans.7, 8 Not the primary tumor of breast cancer, but the metastatic form 

is the leading cause of death in these patients and where current clinical intervention has 

failed.9, 10 

Secondary lung tumors can be from the initial spread of primary tumors before 

clinical intervention, however, it can also be as a consequence from treatments itself 

(chemotherapy or radiotherapy).6 Once metastasis is found, few patients can be cured by 

surgical intervention or other treatment modalities.8 Chemoresistant malignancies is the 

leading cause of death for patients, in which adjuvant chemotherapy, often accompanied 

by surgery has failed  and led the development of resistance.9, 11 Across any cancer type, 

the five-year survival rate for patients exhibiting metastatic form of cancer is 20%.8 

Therefore, new interventions for these patients are much desired.  

2.2 Current Therapies and Therapeutic Challenges in Addressing Drug Resistance 

and Metastasis to the Lung  

 The aim of current treatment strategies is to stop or slow the growth of tumor or to 

relieve symptoms.12 Current therapies for cancers is highly dependent on the tumor type 
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(primary tumor) and how progressive the disease state is. When it comes to metastasis, 

some types can be cured by current treatment, however, most cannot be cured.12  

The treatments offered for lung cancer (more specifically non-small cell lung 

cancer - NSCLC) is normally a regimen of surgery, chemotherapy, and/or radiation 

therapy or a combination of these.11 For advanced stage-lung cancer, radiation therapy, 

chemotherapy, or a combination is the main treatment.14 The standard 

chemotherapeutics given in this case include platinum-based drugs Cisplatin and 

Carboplatin.11, 14 Other common drugs include Paclitaxel, Albumin-bound paclitaxel, 

Docetaxel, Gemcitabine, Vinorelbine, Irinotecan, Etoposide, Vinblastine, and 

Premetrexed.14 Normal chemotherapy regimen usually comprises of a combination of two 

drugs, usually with cisplatin or carboplatin plus a secondary drug or gemcitabine with 

vinorelbine or paclitaxel.14 The combination of two drugs is to mitigate unwanted side 

effects of any one particular drug by reducing total amount and increasing overall 

therapeutic effectiveness.11 However, combination of three drugs has not shown much 

clinical benefit, which has kept standard treatment to a combination of two drugs.14 

Treatments are given intravenously in cycles – 1 to 3 days with rest lasting for 3 to 4 

weeks. If the lung cancer is in the advanced stage, the combination of chemotherapy is 

given up to 4 to 6 cycles.14 If the initial treatment fails to garner a response, a second-line 

chemotherapeutic such docetaxel or pemetrexed,  a targeted therapy, or immunotherapy 

treatment is given.14  

Current therapies for breast cancer also include surgery, radiation therapy, 

chemotherapy, or a combination of these as for lung. If the breast cancer is found in Stage 

I-III, surgery and radiation therapy followed by chemotherapy is normally given either 
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before or after surgery.15 If found in stage IV (metastatic breast cancer), chemotherapy is 

the main treatment modality.15 All chemotherapies are typically given intravenously (IV).71 

However, unlike lung cancer, treatments are dependent on the genetic status of the tumor 

including the expression of estrogen receptor (ER), progesterone receptor (PR) and 

HER2.15  If positive for ER or PR (tumor highly expresses ER or PR), then they are more 

likely to grow in the presence of the hormones estrogen and progesterone and more likely 

to respond to hormone therapy, and hormone therapy will be included after first-line 

treatment of surgery, chemotherapy, and/or radiation therapy.16 If the breast tumor has 

more expression of HER2 (human epidermal growth factor 2) protein, a receptor protein 

that promotes growth (seen in ~20% of cases), trastuzumab, along with chemotherapy is 

commonly given after surgery.16 However, 10-20% cases where these proteins are not 

overexpressed is known as triple-negative breast cancer. This type of breast cancer is 

more aggressive, and chemotherapy is the standard treatment given.15, 16 Currently, there 

are not targeted therapies yet developed for this type.16 

Chemotherapy for breast cancer is given as a neoadjuvant, adjuvant therapy, and 

for the advanced form of the disease.71 It is difficult to predict the risk of metastasis 

development, therefore, more than 80% of patients are given chemotherapy as an 

adjuvant therapy.10  In most cases, chemotherapy is effective when chemotherapeutics 

are given in combination. However, there is no set clear combination that has proven to 

be generally effective in all patients.71 The most common drugs given for adjuvant and 

neoadjuvant therapy are anthracyclines –  doxorubicin and epirubicin, taxanes – 

paclitaxel and docetaxel, 5-fluorouacil, Cyclophosphamide, and Carboplatin. A 

combination of these drugs (2 or 3) are usually given.71  When breast cancer is in the 
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advanced stages, the drugs that are given include taxanes – paclitaxel, docetaxel, 

albumin-bound paclitaxel, antracylines – doxorubicin, pegylated liposomal doxorubicin, 

epirubicin, platinum agents – cisplatin, carboplatin, and others such as vinorelbine, 

capecitabine, gemcitabine, ixabepilone, and eribulin.71 Unlike early stages of breast 

cancer, the advanced stage is usually treated with a single chemotherapeutic.71 In all 

cases when chemotherapy is added to the treatment regimen, the chemotherapy cycles 

will depend on the drug administered. These usually occur by giving dose of drug once – 

few times a week followed by a rest period. The cycles usually last 2 to 3 weeks.71 

Neoadjuvant and adjuvant therapy is normally given for a total of 3 to 6 months.71 If in the 

advanced state, the length you are in treatment depends on health status of patient and 

how well it is working.71 

As one can denote, chemotherapy is one major modality of treatment for cancer, 

especially metastatic cancer. One of the major problems in effectiveness of 

chemotherapy treatment is the ability of chemoresistance to develop. Chemoresistance 

can be broadly divided into two major categories: intrinsic or acquired.22 Intrinsic 

resistance refers to resistance that already exists within the tumor prior to 

chemotherapeutic treatment, thus the tumor containing resistance factors that make the 

therapy ineffective.22 Secondly, acquired resistance in which a tumor develops various 

mechanisms of resistance in response to chemotherapeutic treatment.  Exposure to 

chemotherapeutic agents can lead to drug resistance in multiple cytotoxic drugs – known 

as multidrug resistance (MDR) – which continues to be a dominant obstacle in cancer 

therapy.23 The reason for numerous failures in patients with metastatic cancer is due to 

this spectrum of mechanisms that lead to MDR, whether intrinsic or acquired.23 
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MDR and chemoresistance develop from a multiple and various molecular 

mechanisms and is governed by both genetic and environmental factors within tumors 

and the tumor microenvironment (TME).24 Figure 2.2 summaries some of these 

mechanisms and include increased rates of drug efflux, alterations in drug metabolism 

and drug targets, alterations in signaling pathways to reduce apoptosis, enhanced DNA 

repair, drug compartmentalization, genetic and epigenetic changes that influence the 

local TME, molecular and genetic heterogeneity within the tumor as well as presence of 

cancer stem cells.22-24 Generally, cancerous tumors utilize several of these resistance 

mechanisms either sequentially or concurrently.24 

One well-known mechanism of MDR is drug efflux by cell membrane transporter 

proteins. The most-well known group of transporters is the ATP-binding cassette (ABC) 

transporter family that can transport a variety of diverse substrates out of cells.22-24 49 

Figure 2.2. Various Mechanisms of multidrug resistance. This includes efflux 

pumps, enhanced DNA repair, inactivation of drugs by metabolic pathways or mutation 

or altered drug targets, drug compartmentalization, and inactivation to apoptosis.23   
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ABC transporters have been identified in humans, with 15 known to export 

chemotherapeutics out of cells.23 The most notable ones include the multidrug resistance 

protein 1 MDR1 (ABCB1, p-glycoprotein- P-gp), MDR-associated protein 1 (MRP1, 

ABCC1), and breast cancer resistance protein (BCRP, ABCG2).22-24 These three have 

broad and overlapping substrate specificity and can eliminate many hydrophobic 

chemotherapeutics including taxanes (paclitaxel, docetaxel), topoisomerase inhibitors 

(doxorubicin), and anitmetabolites.22 Rapid upregulation and overexpression of the ABC 

transporters has been seen in a variety of tumors and demonstrated resistance to a 

variety of chemotherapeutics.22-24 Overexpression in MDR1 and its correlation to 

chemoresistance has been seen in kidney, colon, liver cancers, lymphomas, and 

leukemias.22 MRP1 overexpression is seen in prostate, lung, and breast cancer leading 

to MDR.22 BCRP overexpression has led to chemoresistance in both leukemia and breast 

cancer.22 

An alternative resistance mechanism besides efflux pumps normally assist in 

resistance to chemotherapy treatment including alteration in drug targets. Such 

alterations in drug targets can include mutations to the drug target itself or changes in 

expression level.22, 24 Downregulation of target gene is one common mechanism of 

resistance. For example, this can be seen for the effect of doxorubicin and downregulation 

of topoisomerase IIα, its target protein.24 Other common resistance mechanism includes 

mutation in target protein including mutations in topoisomerase IIα, and it is commonly 

seen in receptor tyrosine kinases when targeted therapies are utilized.22, 24 

Another important resistance mechanism employed by MDR cells included the 

downregulation or inactivation of apoptosis.22-24 The pathways that regulate apoptosis are 



www.manaraa.com

27 
 

 
 

known to become dysfunctional in cancer, and can also lead to MDR. A key feature to 

resistance is signaling that allows for cell survival and prevents cell death.24 This can 

occur usually by the upregulation of anti-apoptotic proteins – such as overexpression of 

Bcl-2 gene,22, 23 inhibitor of apoptosis proteins (IAPs),22 and FLIP (a caspase 8 inhibitor).22 

The role of Bcl-2 gene and its family members in response to chemotherapy has been 

the most extensively studied, and has shown to play a role in chemoresistance.22 

There are many other important factors that can lead to MDR, and many can be 

implemented sequentially or concurrently.24  This includes (but not limited to) drug 

inactivation by cancer cellular metabolism, enhanced DNA repair, and 

compartmentalization of drugs.22-24  Altered metabolism can lead to drug resistance by 

inactivation of drug itself. These metabolic pathways are more specific each drug and its 

mechanism of action. One example includes platinum-based drugs (Cisplatin, 

carboplatin, oxaliplatin) can be inactivated by presence of glutathione in which glutathione 

can bind to platinum decreasing its ability to bind to site of action – cisplatin binding to 

DNA.22, 113 DNA damage can be caused by a variety of chemotherapeutic drugs either 

directly (platinum-based drugs) or indirectly (topoisomerase inhibitors), and as cancer 

progresses, an increased repair to DNA damage occurs and can lead to resistance.22, 24 

Compartmentalization of chemotherapeutics away from target site can also occur. Drugs 

can be sequestered into organelles like lysosomes keeping the drug away from site of 

action, in which lysosomes release drug outside the cell via exocytosis.23  

Tumor heterogeneity and the TME also influence drug effectiveness and 

resistance.114 Genetic instability of within cancer cells themselves and epigenetic 

alterations can lead to genomic and phenotypic heterogeneity in the tumor.23 This can 
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occur due to the positive selection of resistant phenotypes due to treatment and the 

adaptation garnered based on signaling from the tumor microenvironment (TME).22, 23 

The TME  contains a variety of cells including tumor cells, cancer stem cells, extracellular 

matrix, cancer-associated fibroblasts, immune cells, inflammatory cells, and blood 

vessels.22  The presence of cancer stem cells (CSCs)  or tumor-initiating cells within the 

tumor are known to evade chemotherapy and allow for resistance to build.24 The tumor 

stroma with increased expression of extracellular matrix has been shown to play a crucial 

role in invasiveness and metastasis as well as sensitivity of tumor to drug treatments.114 

TME can lead to hypoxic regions, which increases expression in genes related to 

angiogenesis and cell survival, which have been shown to play a role in drug resistance.23, 

114 Signaling and interaction of various cell types with the tumor cells can lead to signaling 

(cytokines and growth factors) to activate a variety of cell survival pathways, enhance 

invasiveness and metastasis potential, and evade immune system.22, 115 Therefore, the 

acknowledgement of the complexity of the TME as well as an understanding the roles 

and mechanisms at play that lead to drug resistance is vitally important in order to 

enhance current chemotherapy treatment.  

Due to the complexity of cancer as a disease and multiple mechanisms for drug 

resistance, new drug delivery strategies to overcome these challenges have emerged 

including the use of nanotechnology. Nanomedicines have been able to overcome some 

limitations of current chemotherapy including unwanted side effects, low bioavailability 

due to the hydrophobic nature of most chemotherapeutic agents, invasiveness of 

chemotherapy treatment, and non-specific in delivery killing normal and cancerous 

tissue.11, 23 Nanomedicines have been able to enhance delivery of chemotherapeutics to 
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tumor site and address drug resistance by passively and actively targeting tumor tissues, 

increase solubility of hydrophobic drugs, delivery of combination of drugs/biologics, and 

control drug release at target tumor site.23  

2.3 Dendrimers and Dendrons as Polymeric Nanocarriers and Their Roles for 

Treatment of Primary and Secondary Lung Tumors and MDR 

Nanotechnology, or more specifically, polymeric nanocarriers (PNCs), can be 

utilized to improve drug availability and efficacy, reduce toxicity and systemic side effects 

by enhancing specific targeting of the drugs to the diseased tissue of interest,25, 30 and 

have shown improved clinical efficacy,26 therefore, they hold great potential in the 

chemotherapy treatment.25, 27 The specific targeting and selectivity of chemotherapeutics 

towards malignant tissues is directly correlated to improved quality of life and survival of 

patients,28 allowing for many nanotechnological carriers entering clinical practice and 

numerous studies conducted on optimizing the application of nanomedicines for the 

treatment of cancer.27  PNCs remain a relevant strategy due to the majority of cancer 

chemotherapeutics, including 40% of active substances being identified through 

combinatorial screening programs,25 are poorly water soluble limiting their dose, 

administration, and bioavailability;11 Polymeric nanocarriers have the potential to increase 

the solubility and bioavailability of such newly discovered agents.  PNCs also offer an 

opportunity to improve drug efficiency by mediating the interaction with the various 

extracellular barriers until their target tissues and intracellular targets can be reached.31  

Desirable PNCs are preferably multifunctional, allowing for targeting a specific diseased 

tissue with increasing local concentration at that site, avoidance of biological barriers, 

increase cellular uptake, and enhancement in drug efficacy 27, 28, 30, 31. 
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Among the different PNCs, dendrimer nanocarriers (DNCs) are a promising 

carriers for the delivery of chemotherapeutics.32 DNCs are polymeric hyper-branched 

tree-like structures of nanometer sizes comprising of a central core, repeated branches 

increasing with each generation, with a large number of functional groups on the surface 

as seen in Figure 2.3.33-35 Safety and drug loading capacity are major factors in 

determining if a PNC can be used as an efficient drug delivery vehicle.116 While some 

PNCs may be limited in their drug loading efficiency,30 DNCs hold unique promise due to 

the presence of multiple attachment sites, where both therapeutics and other relevant 

ligands including solubilization enhancers such as polyethylene glycol (PEG), and ligands 

for targeting specific cell types or tissues, making them a desired multifunctional 

nanocarrier for targeted drug delivery33, 34, 36, 117-122. 

Other unique properties that make DNCs desirable drug delivery candidates 

include increased solubility and bioavailability of the therapeutic attached,36, 116, 123 they 

preserve their physical and structural integrity within biological systems,33, 121 they are 

monodisperse,33, 36, 42, 108, 121, 122, 124-126 biocompatible,33, 42, 121, 125 have a tunable size,33, 

36 reproductive pharmacokinetics,36, 42, 121, 125 increased cellular uptake,36, 124 non-

Figure 2.3. Representation of dendrimers demonstrating their structure. They comprise 
of a central core, repeating branches, and increase in number of surface groups with 
each generation.35  
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immunogenic,36, 118, 125 can control or program drug release,34, 36, 37, 116, 124 and have 

potential for targeted delivery to reduce systemic side effects and increase efficacy of 

drug at targeted tissue site.34  These numerous characteristics and properties make 

DNCs a desirable choice for the targeted treatment of lung cancer and lung metastasis. 

DNCs are synthesized by divergent or convergent synthesis strategies, which 

allows for precise control on dendritic architecture and monodispersity, allowing for its 

predictable properties. Depending on the monomer used for synthesis, various classes 

of dendrimers have been made including polyamidoamine (PAMAM), polypropyleneimine 

(PPI), poly-L-lysine (PLL), poly(glycerol-co-succinic acid), melamine, poly(glycerol), 

poly[2,2-bis(hydroxymethyl)propionic acid] (Bis-MPA), poly(ethylene glycol) (PEG), and 

others.37 Of these PAMAM and PPI have been the most extensively investigated.37 

Specifically, PAMAM dendrimers have remained the most studied dendrimer for 

anticancer drug delivery strategies.37  PAMAM dendrimers have been utilized to 

conjugate/encapsulate doxorubicin (DOX),77, 117, 127-135 docetaxel,136 5-Fluorouracil (5-

FU),137-139 Cisplatin,140-142 methotrexate,143-147 paclitaxel,148-150 chlorambucil,151, 152 

gemcitabine,153-155 Trastuzumab,156, 157 and others.  

Although PAMAM dendrimers have been the most widely utilized in anticancer 

drug delivery, PAMAM dendrimers have some limitations.  Known cytotoxicity of PAMAM 

dendrimers across various mammalian cell lines has be well-documented.100-103 PAMAM 

dendrimers demonstrated higher toxicity in various cell lines with increasing 

generation.100-102  The toxicity is also highly dependent on surface charge, in which 

cationic demonstrating the most toxicity, 100, 101 including in vivo situations.103, 158 

Neurotoxicity was also noted for  G5 cationic PAMAM dendrimers causing irreversible 
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membrane effects on neuronal cells not demonstrated with G4.5 anionic PAMAM 

dendrimers.159 Surface modifications of cationic PAMAM dendrimer, such as 

acetylation,160 pegylation,100 and addition of lauryl,100 can overcome some of these 

issues.  However, due to their nature, they are not biodegradable and must be cleared 

intact by body through renal excretion (for low generation PAMAM dendrimers) or cleared 

by liver if surface contains charge or has a hydrophobic nature.104 Therefore, a push for 

alternative dendrimers that are less toxic and more biodegradable have led to the 

synthesis of polyester dendrimers based on bis-MPA.   

Bis-MPA polyester dendrimers hold great promise including all same unique 

features of other dendrimers in addition to their unique properties including 

biodegradability and biocompatibility. Bis-MPA polyester dendrimers were first 

characterized by Ihre et al.161 For the utilization of such dendrimers for biomedical 

applications, an assessment its biocompatibility, immunotoxicity, and biodegradability of 

and its potential fragments, Bis-MPA monomer, and trimethylpropane core were 

evaluated in vitro and compared to G4 PAMAM dendrimers.38  Feliu et al. were able to 

demonstrate biodegradability a physiological pHs and body temperature (37°C) allowing 

the macromolecule to  degrade within a few days, unlike PAMAM dendrimers that are 

resistant to hydrolysis.38 They were also able to demonstrate that polyester Bis-MPA 

dendrimers and its components were not toxic to a few human cell lines including 

macrophages, which cationic G4 PAMAM dendrimers did acquire a time and dose-

dependent toxicity demonstrating its great potential as a nanomaterial for biomedical 

applications.38  Various biomedical applications utilizing this polyester Bis-MPA dendrimer 

has been investigated including its investigations in vivo,39, 162 its use for positron emitting 
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probes for in vivo imaging,163 for use in pressurized metered-dose inhalers (pMDIs),164 

and delivery of chemotherapeutic drugs.40, 165, 166 

Dendrons, a class of dendritic architectures, has been utilized to form a variety of 

dendrimers. The use of bis-MPA polyester dendrons for form dendrimers have been 

explored by Malkkoch.44 Due to the increased interest in dendrimers to contain 

multifunctionality, the heterobifunctional or asymmetric dendrimers have now been 

explored.45 Fréchet et al. was the first to describe Bis-MPA heterobifunctional dendrimers 

made from two connecting dendrons called “bow-tie” or Janus-type dendrimers in which 

the convergent and divergent synthesis were used.167 Further refinement in synthesis 

techniques and use of CuAAC Copper-click chemistry and strain promoted azide-alkyne 

cycloaddition (SPAAC) has been utilized to synthesize a variety of heterobifunctional 

dendrimers.168-171  A few studies utilizing these bifunctional dendrimers in biomedical 

applications and drug and gene delivery has recently been explored.39-41 However, its 

major drawback remains in the complexity of the synthesis of such dendrimers.45 Much 

potential remains in exploring the use of such asymmetric dendrimers as multifunctionality 

in dendrimers remains a high priority in successful drug delivery strategies, especially in 

treatment of complex disease states such as metastatic cancers.  

2.4 Mitochondrial Targeting of Chemotherapeutics as an Effective Strategy to Treat 

Primary and Secondary Lung Tumors and Address MDR 

Mitochondria are cellular organelles that maintain cellular homeostasis and are 

critical players in cellular life and death.48, 49  It has been implicated in multiple aspects of 

tumorigenesis and its progression,49 since mitochondria are structurally and functionally 

different in cancer cells compared to normal cells.48  This includes the Warburg effect in 
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which there is a metabolic reprogramming of cancer cells from aerobic respiration to 

aerobic glycolysis.51 Limitless proliferative potential, enhanced anabolism, decreased 

autophagy, and impaired apoptosis have also been linked to mitochondrial dysfunction.48  

Mitochondria are essential in regulation of energy metabolism, production of reaction 

oxygen species (ROS), and apoptosis.50  Many of the changes seen associated with 

mitochondria in cancer are summarized in Figure 2.4.67  Since mitochondria are essential 

in these key aspects, agents and therapies that can directly target the mitochondria have 

tremendous potential in the elimination of cancerous tumors49, 86 by altering metabolic 

processes required for cancer cell survival,51 increasing ROS production and oxidative 

stress,52 and through mitochondrial destabilization,53 ultimately leading to the induction of 

apoptosis.  

Direct and indirect targeting of the mitochondria to induce apoptosis in cancerous 

cells is a promising area in cancer-based therapy and may help to overcome drug 

resistance.67 Figure 2.5 demonstrates promising targets for cancer therapy, which include 

Figure 2.4. Mitochondrial changes seen in cancer cells including transformed 
metabolism and alterations that make them resistant to apoptosis.67 
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direct and indirect routes of modulating mitochondrial function.67   Both direct and indirect 

targeting of the mitochondria can help overcome resistance of cancer cells to apoptosis 

by directly inducing apoptosis through direct targeting of mitochondria or by gene 

modulations in which a down-regulation of certain pro-survival genes that are 

overexpressed in cancer by utilizing systems like RNAi mechanism.  Therefore, by directly 

and indirectly altering mitochondrial function within cancer cells may be able to overcome 

resistance of cancerous tumors that evade cell apoptosis.  

Many studies have begun to explore targeting specific agents by direct conjugation 

of the targeting moiety and therapeutic agent toward the mitochondria to enhance their 

efficacy in treating various cancers.  One of the most common targeting moieties used 

are delocalized lipophilic cations such as the triphenylphosphoniuim (TPP) ion,50, 84 which 

have been shown to accumulate specifically in the inner mitochondrial membrane into the 

Figure 2.5. Promising direct and indirect targets for cancer therapies to induce 
apoptosis. ROS: reactive oxygen species, ER: endoplasmic reticulum, Nox: NADPH 
oxidase, OXPHOS: oxidative phosphorylation, TPSO: translocator protein, cypD: 
cyclophilin D, HKII: hexokinase II, VDAC: voltage-dependent anion channel, MMP: 
mitochondrial membrane permeabilization.67  
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mitochondrial matrix50 due to their lipophilic delocalized  positive charge allowing them to 

permeate through membrane bilayers and electrostatic attraction to the mitochondrial 

membrane due to the large negative membrane potential across it.172  They have also 

been shown to accumulate more specifically to cancerous cells because mitochondria 

within these cells have an increased mitochondrial membrane potential ~ 60 mV, showing 

a tenfold increase in accumulation.84  

The utilization of TPP targeting by direct conjugation to specific therapeutic 

molecule has been investigated. Dual targeting using folic acid (FA) and 

triphenylphosphonium (TPP) cation via direct conjugation of pro-apoptotic peptide has 

been demonstrated, and it was shown able to be internalized into mitochondria, causing 

induction of apoptosis within these cells, demonstrating great potential in targeting 

specific peptides to mitochondria for cancer treatment.92  TPP conjugated to a Vitamin E 

succinate (α-tocopheryl succinate) was shown to have increased efficacy for this 

compound compared to untargeted compound by increasing ROS production, modulating 

Bcl-family of proteins (proteins involved in cell death), and triggering of mitochondria-

dependent apoptosis.52  Direct conjugation of TPP to DOX to form DOXTPP, was shown 

to increase cytotoxicity in a DOX-resistant cell line with increase in apoptosis induction in 

both the DOX-resistant and wild-type cell lines.54 Recently, DOXTPP loaded into  

hyaluronic acid nanoparticles also demonstrated improved anticancer effects, enhanced 

tumor apoptosis, and better safety profile when compared to free DOX in vivo in mice 

bearing MCF-7/ADR (DOX-resistant) tumors.55 Also the combination of DOX delivery with 

DOXTPP has also been utilized as strategy for dual intracellular targeting of nucleus 

(DOX) and mitochondria (DOXTPP) to overcome drug resistance.56, 57 Direct conjugation 
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of targeting moieties like TPP have shown increased efficacy of various anticancer 

therapeutics. 

An alternative strategy has included the use of targeted nanocarriers 

encapsulating a variety of anticancer therapeutics for their delivery to the mitochondria.  

This has included modified liposomes or with TPP87-89 or rhodamine-123173 and loaded 

with common chemotherapeutics such as paclitaxel,87, 88 or doxorubicin,89 demonstrating 

increased cytotoxicity in cancer cells compared to free drug and non-targeted 

liposomes87, 88, 173 and anti-tumor efficacy in mouse experiments.87, 88 Another 

mitochondrial-targeted liposome system delivered resveratrol to the mitochondria of lung 

cancer cells and apoptosis resistant lung cancer cells and in a xenograft mouse model 

demonstrating enhanced anticancer efficacy.174  Targeted carbon nanotubes have 

superior efficacy in delivering an encapsulated platinum(IV) pro-drug of cisplatin and a 

chemo-potentiator, 3-bromopyruvate compared to free drug.175  The use of PLGA-b-PEG-

TPP nanoparticles with encapsulated lonidamine and α-tocopheryl succinate has been 

shown to improve therapeutic index for cancer treatment.176 A polymer-based nanocarrier 

system where TPP was conjugated to hyper-branched poly(ethylene imine) (PEI) and 

encapsulated chemotherapeutic doxorubicin or a combination of doxorubicin with a 

chemosensitizer chloroquine was shown to possess rapid and severe cytotoxicity in 

prostate carcinoma cells.90, 91 Self-assembled nanoparticles with Tryphenylphosphonium 

conjugated-cyanostilbene demonstrated enhanced mitochondrial targeting of DOX, 

increased ROS generation, and decreased mitochondrial membrane potential in 

cancerous tissues, also suppressing tumor growth in vivo in a xenograft model.93  Micelles 

targeting DOX have also been investigated.  DOX was shown to94, 177 accumulate more 
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rapidly towards the mitochondria in resistant cells in vitro and resistant tumors in vivo, 

thus indicating that targeting DOX to the mitochondria could help overcome some 

resistant cancer types.94. The accumulation of DOX toward the mitochondria was shown 

to increase mitochondrial-mediated cell apoptosis in drug resistant cells using 

nanoparticles.177 These various studies have demonstrated that targeting specific 

anticancer agents towards mitochondria can lead to higher efficacy of the agent including 

overcoming multidrug resistance and may avoid unwanted side effects as seen with free 

chemotherapeutics.  

 Doxorubicin (DOX) is a widely used chemotherapeutic to treat a variety of cancers.  

It is an antitumor anthracycline antibiotic that was first isolated from Streptomyces 

peucetius in 1967.178  DOX has shown to interact with the nucleus, mitochondria, and 

biological membranes affecting all cells.178  The main mechanisms of action include: 1) 

intercalation into the DNA, which inhibits protein synthesis and DNA replication; 2) ROS 

production leading to DNA, protein, lipid damage; 3) DNA binding, cross-linking, and 

alkylation; 4) interference in helicase activity and DNA unwinding and separation; 5) 

disruption of bilayer structure of the membrane, and 6) inhibition of topoisomerase II 

leading to DNA damage.178 The major side effect of DOX is cardiotoxicity with decline in 

cardiac function, and chronic or delayed cardiomyopathy, which can ultimately lead to 

congestive heart failure.178-180 This has limited its therapeutic efficacy.180 Therefore, as 

discussed above, several drug delivery systems, such as polymeric nanoparticles,90, 91, 

93, 177, 181 liposomes, 89 and micelles,94 have been used to reduce these side effects and 

increase therapeutic efficacy of DOX.  
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 It has also been shown that when DOX has been targeted towards the 

mitochondria, it can overcome drug resistant cancer cells and tumors.54-57, 94, 177, 182  

However, the entire mechanism of how DOX interacts with various processes in the 

mitochondria is not yet known.  It has been proposed that mitochondrial Complex I 

transforms DOX into a more reactive semiquinone radical resulting in increased ROS 

production and higher oxidative stress.178, 179  Also, the inhibition of the election transport 

chain (required for the synthesis of ATP- energy source of cells) by DOX via inhibition of 

complexes I and II may also lead to increased ROS production.179  The increase of ROS 

production by DOX can lead to redox modifications to proteins, lipids, and DNA within the 

mitochondria affecting its structural integrity and function, and can ultimately lead to 

mitochondrial-induced apoptosis.179  Short term incubation of DOX to cancerous cells also 

brought about rapid changes in mitochondrial function including changes in mitochondrial 

redox potentials towards an increased oxidative state, depolarization of the inner 

mitochondrial membrane, increased matrix calcium levels, and increased mitochondrial 

ROS production.183  Long term effects included an inhibition of respiration, ATP depletion, 

and increased production of proteins association with cell cycle arrest and cell death.183  

Also, DOX’s ability to intercalate with DNA may affect the integrity of mtDNA, which could 

also contribute to a decrease in electron transport chain complexes and overall electron 

transport chain (ETC) function. A synergistic effect of prodrug nitrooxy-doxorubicin 

demonstrated a targeting ability of prodrug to localize to the mitochondria and induce 

oxidative and nitrosative stress and activation of apoptotic factors.184  The DOXTPP drug 

also demonstrated an increase in apoptosis induction indicated by an increase in 

apoptotic proteins PARP and caspase 3 as well as showing an increase in efficacy against 
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DOX-resistant cell lines.54, 56 The fact that is has been demonstrated by previous studies 

to be effective in resistance cancer cells makes DOX a highly relevant choice to target 

towards the mitochondria.  

2.5 siRNA Delivery Strategy to Address Drug Resistance for Primary and 

Secondary Cancer Treatment 

The delivery of short interfering RNAs (siRNAs) utilizes the RNAi mechanism and 

can be used to indirectly target the mitochondria to help induce intrinsic apoptosis.  The 

RNAi mechanism, a unique form of post-transcriptional gene silencing provides a way to 

downregulate specific target proteins or oncogenes, many of which are overexpressed in 

cancers, and thus may be used to help induce apoptosis.58, 185-187  The RNAi mechanism, 

as seen in Figure 2.6,188 can be exploited to induce gene silencing by the delivery of 

siRNAs, which are double-stranded RNA molecules that are 19-25 nucleotides long.58, 186  

The siRNA is incorporated into a RNA induced silencing complex (RISC), which unwinds 

the two strands with the passenger strand being discarded and the guide strand is used 

for messenger RNA (mRNA) recognition. The binding of guide strand of the siRNA with 

mRNA recognition in RISC allows for site-specific cleavage of the mRNA, degradation of 

mRNA, and the silencing of the gene expression.  The siRNA loaded RISC is then allowed 

to find another mRNA within the cytoplasm leading to a reduction in amount of overall 

protein being made within the cell without modifying the cell’s DNA.186  By using the RNAi 

mechanism, specific pro-survival proteins associated with mitochondrial-controlled 
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apoptosis such as Bcl-2 can be downregulated in order to help induce cell death within 

cancerous tissues. 

For efficient delivery of siRNA to the cell, however, the siRNA must be able to cross 

the lipid bilayer of the cell membrane.  Free siRNA has low transport across the lipid 

membrane as it is a negatively charged macromolecule.58 Therefore, a carrier is often 

required to help siRNA cross the plasma membrane and protect the siRNA from 

degradation by nucleases.  The most likely mechanism of internalization into the cell will 

be non-receptor mediated endocytosis, where the siRNA and nanocarrier must avoid 

endosomal/lysosomal degradation and escape to the endolysosomal compartments in 

order to be released in the cytoplasm. 58  Therefore, many researchers have been looking 

at utilizing nanotechnology to efficiently deliver siRNA to the cytoplasm.  

Figure 2.6. the RNAi mechanism. The double-stranded RNA is cleaved by Dicer protein 
into siRNAs in ATP-dependent process. The siRNAs are incorporated in RISC complex, 
which unwinds the double stranded siRNA (also requiring ATP). Once unwound, the 
guide siRNA strand guides RISC to mRNA that has a complementary sequence, which 
leads to cleavage of the target mRNA.188 
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Several groups have explored the use RNAi mechanism for cancer treatment by 

delivering siRNA incorporated into nanoformulations to the cell cytoplasm.  Some groups 

have focused on delivering one type of siRNA to inhibit EGFR, c-myc, survivin, Bcl-2 

expression using liposome-polycation nanoparticles, gold nanoparticles, and dendrimers 

complexes as nanocarriers.66, 189-191 This has led some of these nanosystems 

incorporating siRNA into Phase I or Phase II clinical trials.65 However, because of the 

complexity of cancer, crosstalk in multiple signaling pathways, the co-delivery of multiple 

siRNAs or siRNAs with chemotherapeutic agents has been more recently the focus, 

especially in cancer cells that exhibit multidrug resistance (MDR).58, 192  The various 

nanocarriers include liposome-polycation nanoparticles, polymeric nanoparticles, 

liposomes, mesoporous silica nanoparticles, lipid-nanocarriers, micelles, chitosan 

nanoparticles, and PEI-Graphine oxide to deliver various siRNAs targeting P-gp, MRP1, 

Bcl-2, VEGF, mTERT, c-myc, survivin, and Mcl-1 in conjunction with chemotherapeutics 

such as Doxorubicin, Paclitaxel, and Cisplatin.60, 185, 187, 192-203  These formulations have 

seen higher effectiveness in treatment of cancer due to the synergistic effect siRNA and 

chemotherapeutic agents can bring by targeting multiple cell-signaling pathways and help 

overcome MDR. Therefore, a combination of treatments to directly target a 

chemotherapeutic to the mitochondria and indirectly modulate signaling proteins 

associated with the mitochondria by delivering siRNAs may contribute to a synergistic 

effect for cancer treatment.  

The siRNAs of interest that are involved in intrinsic apoptosis include Bcl-2 and 

Survivin.  Bcl-2 is a protein that belongs to Bcl-2 family of proteins that regulate cell 

survival and cell death.204  Bcl-2 prevents intrinsic (mitochondrial-dependent) apoptosis 
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by interacting with other members of Bcl-2 family of proteins on the outer mitochondrial 

membrane as seen in Figure 2.7 205.   Bcl-2 upregulation has been associated with poor 

cancer prognosis and drug resistance and has also been implicated in preventing cell 

death by its ability to modulate cellular redox status and mitochondrial metabolism.22, 67 

Survivin is a 16.5 kDa intracellular protein that belongs to the Inhibitor of Apoptosis Protein 

(IAP) family.68, 206 It is another protein that promotes cell survival and inhibits cell death 

by inhibiting caspases, the protein executioners of programmed cell death.95, 206, 207  It 

also has roles in regulation of cell division and has  also been implicated to play a role in 

angiogenesis as well as cell motility increasing the ability of tumor growth and metastasis 

to occur.68, 206, 208  Survivin is also usually not found in normal adult tissues, but commonly 

expressed in high levels in cancerous tumors including lung cancer (more specifically 

NSCLC) and breast cancers as well as a variety of others.66, 95, 206-211  Overexpression of 

survivin has been linked to unfavorable outcome of the disease, increased rates of 

Figure 2.7. General scheme of how Bcl-2 regulates intrinsic (mitochondrial) apoptosis. 
Bcl-2 is found on the outer mitochondrial membrane and interacts with Bak/Bax 
proteins, which prevents apoptosis form occurring. Stress induces BH3-only proteins 
to interact with Bcl-2, which allows Bcl-2 to disassociate from Bak/Bax proteins. The 
Bak/Bax proteins can oligomerize and initiate mitochondrial outer membrane 
permeabilization, release of cytochrome c and other pro-apoptotic factors that initiate 
caspases and lead to programmed cell death.205 
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recurrences, resistance to treatments, and poor survival in patients with NSCLC.66, 206, 209  

It has also been implicated that increased survivin expression was associated with 

increase overexpression of MDR1 resulting in multidrug resistance MCF-7 breast cancer 

cells,69 as well as elevated erbB3 expression in paclitaxel-resistance in breast cancer 

cells.70 Decreased expression of survivin using siRNA results in apoptosis within these 

cells and sensitized these cells to anti-cancer therapeutics.66, 95  Bcl-2 and survivin are 

known to be overexpressed in a wide variety of cancerous tumors, associated with poor 

prognosis, and have been correlated with multidrug resistance, making them both great 

therapeutic targets60, 66-68.  Therefore, the indirect mitochondrial targeting of Bcl-2 and 

survivin by downregulation using siRNA holds promise as a treatment strategy, including 

its co-delivery with mitochondrial-targeted anticancer agents and regional delivery to the 

lungs.  

2.6. Direct Pulmonary Drug Delivery for the Treatment of Primary and Secondary 

Lung Tumors 

Oral inhalation (OI) is a promising route of administration to directly target 

therapeutics to (regionally) and through (systemically) the lungs.  The use of OI is a non-

invasive way to directly target the lungs,72 increased selectivity, and lower systemic 

exposure,73 thus resulting in fewer side effects compared to other commonly used routes, 

including intravenous (IV) injection– i.e., IV administration of nanocarriers has been 

shown to significantly accumulate into the liver, thus significantly reducing the amount 

that reaches the tumor site.74, 75, 106 The low enzymatic activity in the lungs also allows for 

higher bioavailability of drug and can bypass the first-pass hepatic metabolism as 

compared to IV, therefore, the required dose can be reduced as well as lowering costs.73-
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75, 212, 213 A higher absorption rate and rapid onset of action also make the pulmonary 

route a desired route of delivery.212-214 Some other advantages to pulmonary delivery 

include large surface area-to-mass of the lungs (> 100 m2), epithelial permeability 

(epithelium layer – 0.2-1 µm thick), and small aqueous volume at the absorptive surface 

74, 213, 215-217.  OI also represents a non-invasive alternative for systemic delivery of 

therapeutics due to the lungs providing a large alveolar surface area and thin epithelial 

air-blood barrier providing a rapid absorption of molecules from the alveolar space to the 

blood stream, 73 which can be attractive to treat lung cancer metastasis that accounts for 

majority of the cases diagnosed. 8, 76  Due to these advantages, OI for treatment of lung 

cancer and lung metastases is the most appropriate route for administration of drugs.75  

Despite all the advantage OI brings, there are also challenges when delivering 

drugs directly to the lungs. The lung physiology itself provides extracellular barriers when 

it comes to the delivery of therapeutics to the lungs.  This includes the fact that the lungs 

have a branched architecture and the type of lung epithelium found in each region (Figure 

2.8) 216.  The lungs bifurcate 16 times in the conducting airways followed by 6 bifurcations 

of the respiratory bronchioles 73. The particles will be deposited into the airways depends 

Figure 2.8. Comparison of different lung epithelium at different lung regions. Aerosol 

particles can penetrate deeper in the lungs as the epithelium becomes thinner.216  
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on the force that dominates the particles, in which aerodynamic size of the particles plays 

a huge importance 216.  The branched architecture and type epithelium affect clearance 

mechanism (mucocilliary and cough) encountered when the particles are deposited, the 

lung surfactant encountered (alveolar region), as well as the immune response and 

clearance mediated by macrophages. 73, 216 Therapeutic drugs can be rapidly cleared by 

mucocilliary escalator, metabolized locally, diffuse across lung epithelia to penetrate 

bloodstream, or taken up by resident alveolar macrophages.214 Therefore, the 

nanocarriers must possess desired characteristics that enable them to be deposited in 

specific region of lungs and overcome these challenges to be effective.  They must be 

designed to bypass the above-mentioned clearance mechanisms of the lungs, provide 

prolonged residence times of the therapeutic within correct targeted lung tissue.73 They 

must possess the correct aerodynamic size, contain a neutral surface charge and be 

hydrophilic in nature to allow for passive diffusion and prevent strong interactions with 

negatively-charged molecules within the mucus, and be nonimmunogenic to avoid 

macrophage clearance, target specific cell lung populations, protect the therapeutic from 

degradation, enhance therapeutic solubility of hydrophobic therapeutics, and control 

therapeutic release.73, 216, 218  If these challenges can be overcome, one must be able to 

design nanocarrier in suitable aerosol formulations for portable inhalers.  

The two most widely used portable inhalers include pressurized metered dose 

inhalers (pMDIs) and dry powder inhalers (DPIs). pMDIs contain a formulation in which 

the therapeutic is dissolved or suspended in a propellent – commonly 

hyrodrofluroralkanes (HFAs).213 The device, when actuated, a metered volume of 

propellant and therapeutic are pushed through a valve system, in which the propellant 
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aerosolizes the therapeutic.213 Dosing with this device  is very uniform and is more 

reproducible compared to DPIs.74, 213 However, pMDIs are limited in some respects 

including high breath coordination of patient, limited dose per actuation, and high oral 

deposition.74 DPIs are devices are breath-actuated devices that aerosolize dry powder 

through shear-induced force.213 DPIs do not depend on coordination of patient breaths, 

however, the amount of dose delivered is highly dependent on the inspiratory flow rate 

making dose replication difficult.74, 213 Also, dry powder formulations tend to have 

electrostatic interactions between the particles  and/or hygroscopic phenomena, which 

can inhibit aerosolization.74, 213  Despite these limitations, DPIs are typically easier to use 

not requiring coordination of actuation and inhalation (like pMDIs) and do not require 

propellant.213 Therefore, both pMDIs provide various advantage and disadvantages that 

need to be optimized with formulation development.  

Nanotechnology has made significant enhancements in the in vitro and in vivo 

performances of aerosol formulations for pMDIs and DPIs. In pMDIs, nanoparticle 

formulations have been able to provide better dose uniformity and lowering dose 

requirements.219 Nanoparticle suspension formulations have minimized potential in vivo 

toxicity by lowering solvent presence in formulation.219 For DPIs, nanoparticle 

formulations provide a lower density compared to dense particles of same size, which 

results in a lower mass median aerodynamic diameter (MMAD) allowing for deeper lung 

deposition, and improves powder flowability.220 In both cases, nanoparticle formulation 

have shown to increase residence time of drug into lungs and reduced mucociliary 

clearance.74 Nanoparticles do provide these advantages listed here, but still require to 

have micron sized 1-5 µm to be considered optimal for deep lung deposition.214 Therefore, 
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in some situations, nanoparticles can be up formulated into suitable aerosol sizes using 

such techniques as spray-drying in which nanoparticles are spray-dried in sugar 

excipients to achieve optimal aerosol sizes of micron size. Our group has demonstrated 

the use of PAMAM dendrimers and polyester Bis-MPA dendrimers can be formulated for 

aerosol delivery in pMDIs or DPIs with or without use of spray drying technique including 

delivery of chemotherapeutic doxorubicin and siRNA.96, 127, 134, 164, 221 Therefore, use of 

dendrimers in aerosol formulations provides a relevant strategy for the noninvasive 

delivery of therapeutics for the treatment of lung cancer and lung metastases. 

2.7 Immunotherapy Strategies by Macrophage Modulation in the Tumor 

Microenvironment as Treatment Strategy for Primary and Secondary Lung Tumors 

While the tumor microenvironment (TME) includes cancerous cells, leukocytes, 

fibroblasts, vascular endothelial cells, immune cells comprise of a major component of 

cell type found.81 These immune cells interact with tumor cells to influence various 

processes including tumor initiation, growth, and metastasis.80 Of these immune cells, 

there is the present of highly plastic cell type present: macrophages. Macrophages 

present within the TME are known as tumor-associated macrophages (TAMs) and 

influence a variety of activities within the TME.80 TAMs are derived from circulating 

monocytes and are one of the most abundant normal cells within the TME.81 Recently, 

tumor-associated macrophages (TAMs) have been considered an attractive target for 

therapy against many types of cancers. It has been demonstrated by preclinical and 

clinical studies that TAM number and density is associated with poor prognosis.81, 222 

Many preclinical studies have demonstrated that therapy response can be enhanced 

when macrophage entry to TME is blocked or phenotype of these TAMs is manipulated.81 
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Macrophages have spectrum of phenotypes, however, for simplicity, are 

characterized into two polarized types: M1 or M2. M1 macrophages, or classically 

activated macrophages, are known to be proinflammatory, immunostimulatory, or 

antitumor.81 They are activated by cytokines interferon-γ and produce proinflammatory 

and immunostimulatory cytokines such as interleukin-12 (IL-12) and IL-23.80 TAMs are 

believed to resemble more M2-polarized macrophages, in which they are anti-

inflammatory, proangiogenic, immunosuppressive, and protumor.80, 81 The presence of 

TAMs – or M2-like macrophages – are seen in early stages of cancer as well as the 

metastatic type, and especially when tumors have been treated with 

chemotherapeutics.20, 81 M2 macrophages (TAMs) are stimulated by Th2 cytokines (I-L4, 

IL-10, and IL-13) within the TME and are known to promote tumor proliferation, invasion, 

metastasis, angiogenesis, inhibit tumor response mediated by T cells, allow for tumor 

progression, and demonstrate resistance to therapy.20, 80 The regulation and pathways 

between of the two TAM phenotypes and interaction with tumor cells is summarized in 

Figure 2.9.20  
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The colony-stimulating factor 1 receptor (CSF1R) is a critical receptor for 

mononuclear phagocyte system, and in particular macrophages and macrophage 

polarization.20, 80 CSF1R belongs to a type III tyrosine kinase receptor family, in which 

CSF1 or IL-34 can bind to receptor causing homodimerization and subsequent activation 

and rapid endocytosis.20, 223 The details of activation can be seen in Figure 2.10.224 

Figure 2.9. Stimulation or suppression of the immune system by TAMS. Depending on 

the TME, the cytokines emitted by tumor cells, fibroblasts or other stromal cells, immune 

cells, and macrophages themselves can polarize TAMs to M1-like or M2-like. M2 TAMs 

promote tumor growth (not illustrated here) as well as suppress various immune effector 

cells directly or through other immune cells that lead to tumor cell elimination. M1 TAMs 

can either directly kill tumor cells or stimulate/inhibit other immune cells to kill tumor cells 

by releasing of various cytokines/chemokines. M2 TAMs are known to express colony-

stimulating factor 1 receptor (CSF1R) and is essential to their function, making CSF1R 

a desirable therapeutic target to eliminate/repolarize these cells.20  
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CSF1/CSF1R signaling promotes proliferation and differentiation of myeloid cells into M2 

TAMs and recruitment into tumors, and CSF1R+ macrophages have been correlated with 

poor survival in several types of tumors.20, 82 Therefore, inhibition of CSF1R by the use of 

various inhibitors (seen in Figure 2.11)222 have recently been testing preclinically and 

clinically.80 The inhibition of CSF1R can lead to the elimination of M2 TAMs or their 

repolarization to M1 phenotype.  Therefore, the change in M1/M2 ratio by increasing M1 

phenotype and decreasing M2 phenotype is thought to increase efficacy of treatment.  

Figure 2.10. CSF1R activation. CSF1/IL-34 bind to ligand causing homodimerization. 

Subsequent phosphorylation (P) and ubiquitination (Ub) lead to receptor to be fully 

activated. Phosphorylation of 550 residue and ubiquitination are critical in further 

tyrosine phosphorylation and activation.224 
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Of these CSF1R inhibitors, the small molecule PLX3397 an oral tyrosine kinase 

inhibitor has shown great promise in increasing efficacy preclinically with current clinical 

trials taking place. Its target is intracellular (Figure 2.11) by inhibiting the phosphorylation 

of the kinase domains, therefore, preventing the CSF1R activation.222, 225 It has been 

shown to repolarize M2 TAMs to M1 TAMs or eliminating M2 TAMs to alter the overall 

M1/M2 ratio.83 It has been demonstrated efficacy in vivo and is currently in clinical trials 

for use as a monotherapy and combination therapy.20, 80 As a monotherapy, it is currently 

in ongoing or complete clinical trials for c-kit-mutated melanoma, glioblastoma, prostate 

cancer, sarcoma, neurofibroma, classical Hodgkin lymphoma, and leukemias.20  

Combination therapies include PLX3397 in combination with chemotherapeutics, 

Figure 2.11. Examples of various CSF1R signaling blocking agents. PLX3397 is a 

tyrosine kinase inhibitor.222  
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irradiation, anti-angiogenic molecules, as well as other cancer immunotherapies for 

treatment of variety of cancers including prostate cancer, breast cancer, glioblastomas, 

and melanomas, and various other solid tumors .20, 82 Of the clinical trials, CSF1R 

inhibitors in combination with various immunotherapies (immune-checkpoint inhibitors, 

which has shown great promise in over conventional therapy including for NSCLC) is the 

dominant combination group being tested.20 For PLX3397, it is being combined with aniti-

PD1 monoclonal antibody Pembrolizumab for the treatment of various tumors including 

NSCLC, solid tumors, malignant melanoma, and others.20 The efficacy and various 

combinations of most effective treatment has not been concluded and may depend on 

tumor type. Currently, research on effectiveness in various situations and desired 

synergistic combinations is yet to be discovered.  
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CHAPTER 3 – EFFECT OF THE CONJUGATION DENSITY OF 
TRIPHENYLPHOSPHONIUM CATION ON THE MITOCHONDRIAL TARGETING OF 
POLY(AMIDOAMINE) DENDRIMERS 
 
3.1 Introduction 

Mitochondria are responsible for maintaining cellular homeostasis and producing 

cellular energy (adenosine triphosphate - ATP) via oxidative phosphorylation.84, 85  They 

are also key players in the production of reactive oxygen species as well as regulating 

calcium homeostasis and the intrinsic apoptotic pathway.48, 50, 84  Mitochondria are 

organelles of great relevance in a variety of important highly energy-dependent tissues, 

including brain, heart, and muscle.84, 226  As a consequence, mitochondrial dysfunction 

has been linked to a range of diseases in these tissues (and others) including 

neurodegenerative and neuromuscular disorders, cancer, ischemia-reperfusion injury, 

metabolic diseases such as diabetes and obesity, chronic autoimmune inflammatory 

diseases, kidney and liver diseases, and aging.50, 53, 84, 227-230  In spite of the clinical 

relevance of these mitochondrial-related diseases many still lack effective therapeutic 

options.84, 231  The ability to design mitochondrial-targeting systems may therefore provide 

valuable alternative strategies to enhance therapeutic outcomes of mitochondrial-related 

diseases while at the same time minimizing side effects associated with the therapeutic 

molecules.232 

One major class of mitochondrial-targeting molecules is delocalized lipophilic 

cations (DLCs).  Triphenylphosphonium cation (TPP),50, 84 one of the most common 

DLCs, has been shown to accumulate preferentially at the inner mitochondrial 

membrane,50 at concentrations approximately 5-10 fold greater in the cytoplasm 

compared to the extracellular environment, with a further accumulation of hundreds of 
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times within the mitochondria when compared to the cytoplasm.226  The colocalization 

efficiency of TPP with the mitochondria is related to its lipophilic nature and delocalized 

positive charge, which allows TPP to permeate through membrane bilayers (hydrophobic) 

that have large negative potentials such as that of the mitochondria - 150-180 mV.172, 233 

The unique properties of TPP has been explored to help target a number of therapeutic 

agents to mitochondria including antioxidants,176, 226, 229, 234 anticancer agents,54, 87, 90, 176, 

235, 236 peptides,92 nucleic acids,237 and photosensitizers for photodynamic therapy238-240 

through direct conjugation to the drug or via a versatile nanocarrier.  The ability to combine 

the targeting properties of DLCs with nanocarrier systems may thus result in the 

development of new drug delivery technologies with the potential to address 

mitochondrial-related disorders as higher payloads, spatially and temporally controlled 

drug release, and improved pharmacokinetics can be potentially achieved by controlling 

the chemistry of the nanocarrier.231 

Within this context, poly(amidoamine) (PAMAM) dendrimers are very relevant 

nanocarrier candidates as they possess a large density of surface functional groups,34, 35, 

231 which can be used to conjugate therapeutic molecules of interest.  Drug conjugation 

to the dendrimers may also help increase the solubility and bioavailability of the 

conjugated therapeutic36, 116, 123 and the preservation of their physical and structural 

integrity within biological systems.121, 231  Dendrimers also display highly reproducible 

pharmacokinetic profiles due to their uniform structure.36, 42, 121, 125  They are also a very 

relevant option for the delivery of combination therapies, which is highly significant for the 

treatment of multidrug resistant (MDR) cancers.192 . Their surface groups can also be 

modified with ligands that may help further enhance the solubility of the drug-dendrimer 
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conjugates,36, 116, 123 increase circulation time, 116, 241  reduce toxicity,42, 241 and also act as 

flexible linkers to targeting moieties such as TPP.242, 243  

Considering the challenges and opportunities stated previously, the goal of this 

study was to systematically investigate the effect of the number density of TPP 

conjugated to PAMAM dendrimer nanocarriers (DNCs) on the mitochondrial-targeting 

ability of such nanocarriers.  More specifically, we report here the synthesis, cellular 

uptake, cytotoxicity, and mitochondrial colocalization of TPP-modified, amine-terminated, 

generation 4 PAMAM (G4NH2) dendrimer nanocarriers on an in vitro model of the human 

alveolar epithelium (A549 cells).  We study the effect of the type of conjugation between 

TPP and dendrimer: direct (G4NH2-TPP) vs. that through a flexible poly(ethylene) glycol 

(PEG) linker (G4NH2-PEGTPP).  We also determine the impact of the number density of 

conjugated TPP (TPP or PEGTPP) on the interaction of the DNCs with A549 cells and 

their mitochondrial colocalization.  Three levels were investigated for G4NH2-TPP: no (0 

TPP); low (5 TPP); and medium (10 TPP); and three for G4NH2-PEGTPP: low (5 

PEGTPP); medium (10 PEGTPP) and high (21 PEGTPP).  

3.2 Materials and Methods 

3.2.1 Materials 

Generation four, amine-terminated, poly(amidoamine) (PAMAM) dendrimer 

(G4NH2) provided in methanol at 9.8% w/w was purchased from Dendritech Inc. (Midland, 

MI).  G4NH2 dendrimer was heated at 70°C for 30-40 minutes and dried under vacuum 

to remove methanol solvent prior to further reaction.  Methylsulfoxide (DMSO) anhydrous 

(Acros), Fluorescein isothiocyanate (FITC) (Pierce), N-Hydroxysuccinimide (NHS) 

(Acros), sodium chloride (NaCl), phosphate buffered saline (PBS, 10x), and (4-(2-
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hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) were purchased from Thermo 

Fischer Scientific (Rockford, IL).  (3-Carboxypropyl)triphenylphosphonium bromide 

(TPP), P-toluenesolfonic acid (p-TSA) and triethylamine (TEA) were purchased from 

Sigma Aldrich (St. Louis, MO).  N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) 

was purchased from Advanced ChemTech Inc. (Louisville, KY).  NH2-PEG1000Da-

COOH (PEG) was purchased from Jenkem Technology (Plano, TX).  All chemicals were 

used as received unless otherwise specified.  Spectra/Por cellulose ester membrane 

dialysis tubing was purchased from Spectrum Laboratories, Inc. (Rancho Dominguez, 

CA).  Deuterated DMSO (d-DMSO) and Deuterium Oxide (D2O) were purchased from 

Cambridge Isotope Laboratories (Tewksbury, MA).  Hank’s Balanced Salt Solution 

(1xHBSS) supplemented with 0.01 M HEPES was prepared according to recipe provided 

by Irvine Scientific (Santa Anna, CA).  Deionized (DI) water (resistivity of 18.2 MΩ.cm) 

was obtained from NANOpure® Diamond UV ultrapure water system (Barnstead 

International - Lake Balboa, CA).  Amicon Centrifugal Filters were purchased from EMD 

Millipore (Billerica, MA).  Dulbecco's Modified Eagle Medium 1× high glucose (DMEM), 

Penicillin–Streptomycin, Mitotracker® Deep Red FM (Molecular Probes®, Invitrogen), 

NucBlue™ Live Cell Stain (R37605) (Molecular Probes®), Trypan Blue (0.4 %), and 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from 

Life Technologies (Grand Island, NY).  Fetal Bovine Serum (FBS, non-heat inactivated) 

was purchased from Atlanta Biologicals (Flowery Branch, GA).  Trypsin-EDTA (1x) 

(Corning®), and 24-well and 96-well cell culture plates (Corning®) were purchased from 

VWR International.  
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3.2.2 Conjugation of FITC to G4NH2 Dendrimer 

G4NH2 (437 mg) was dissolved in dimethyl sulfoxide (DMSO, 44.24 mL) with the 

addition of p-TSA (118.05 mg) and FITC (20.06 mg) was stirred at room temperature for 

24 hours to form the G4NH2-FITC conjugate.  The product was dialyzed against DI water 

for 24 hours using a Spectra/Por dialysis membrane (MWCO 1000 Da), and further 

purified using an Amicon Ultra 15 centrifugal filter (MWCO 3000 Da) against a 1xPBS, 1 

M NaCl solution (pH 7.2) followed by DI water.  The product was then frozen overnight 

and lyophilized to obtain solid product - G4NH2-FITC conjugate.  The G4NH2-FITC 

conjugate was characterized by 1H-NMR (Varian Mercury 400 mHz).  Light Scattering 

(LS, Malvern Zetasizer) was used to obtain the hydrodynamic diameter (HD) and zeta 

potential (ζ) of the conjugates.  1H-NMR analysis was conducted with 9.91 mg dissolved 

in d-DMSO.  1 mg/mL of G4NH2-FITC dissolved in DI water and analyzed for LS.  The 

G4NH2-FITC conjugate was then used as reactant in the addition of TPP or PEGTPP, as 

described below, or kept as the G4NH2-FITC-0TPP (also called G4NH2-0TPP), a negative 

control group (no mitochondrial-targeting TPP).  The G4NH2-0TPP product was left in 

DMSO and frozen at -20°C until needed. 

3.2.3 Conjugation of TPP to G4NH2-FITC 

TPP was activated using EDC/NHS coupling reaction adding 1.2:1 molar ratio of 

both EDC and NHS to TPP dissolved in anhydrous DMSO and allowed to stir at room 

temperature for 3 hours to obtain activated TPP.  G4NH2-0TPP conjugate was added to 

the activated TPP dissolved in DMSO and the reaction mixture was allowed to proceed 

at room temperature for 3 days.  TPP was conjugated to G4NH2-FITC at various TPP 

densities by increasing the molar feeding ratios of activated TPP to G4NH2-FITC to form 
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G4NH2-FITC-TPP – also called G4NH2-TPP.  The reaction mixture was then dialyzed 

against distilled water using a using a Spectra/Por dialysis membrane (MWCO 8000 Da).  

The product was further purified using an Amicon Ultra 15 centrifugal filter (MWCO 3000 

Da) against a 1xPBS, 1 M NaCl solution (pH 7.2) and again against distilled water.  The 

G4NH2-TPP conjugates were characterized by 1H-NMR and LS as discussed above. 

3.2.4 Conjugation of Bifunctional PEG1000 to TPP 

The conjugation of TPP to NH2-PEG1000-COOH to form PEGTPP was achieved 

by activating TPP using EDC/NHS coupling reaction with 1:1 molar ratio of TPP:EDC and 

TPP:NHS in anhydrous DMSO and stirred at room temperature for 12 hours.  NH2-

PEG1000-COOH (70 mg) was dissolved in anhydrous DMSO with TEA (34.2 µL) at a 

molar ratio of 2:1 of TEA:PEG and added to the reaction mixture of activated TPP and 

allowed to stir at room temperature for 24 hours.  The DMSO was removed using vacuum 

pump for 24 hours. 

3.2.5 Conjugation of PEGTPP to G4NH2-FITC 

Once the PEGTPP product was synthesized, PEGTPP was dissolved in 

anhydrous DMSO and activated using and EDC/NHS coupling reaction with a 1:1 molar 

ratio of PEGTPP:EDC and PEGTPP:NHS.  The mixture was let to stir at room 

temperature for 10 minutes.  The activated PEGTPP was added to the G4NH2-FITC 

conjugate at increasing molar feeding ratios to form G4NH2-FITC-PEGTPP (also called 

G4NH2-PEGTPP) at several PEGTPP densities, and then stirred at room temperature for 

5 days.  The reaction mixture was then dialyzed against 1xPBS for 24 h and DI water for 

an additional 48 h using a Spectra/Por dialysis membrane (MWCO 8000 Da).  The 

G4NH2-PEGTPP products were frozen overnight and lyophilized to form solid products.  
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The G4NH2-PEGTPP conjugates were characterized by 1H-NMR and LS as discussed 

above. 

3.2.6 Cell Culture 

A459 lung adenocarcinoma cells were grown in DMEM supplemented with 10% 

fetal bovine serum (FBS) and 1% Penicillin Streptomycin (100 U/mL Penicillin and 100 

µg/mL Streptomycin) antibiotics (AB) and cultured at 37°C with 5% CO2. 

3.2.7 Cytotoxicity of Dendrimer Conjugates 

A549 cells were seeded at a density of 5,000 cells/well in a 96-well plate in DMEM 

supplemented with 10% FBS and 1% AB and incubated for 24 hours under 5% CO2 at 

37°C.  Dendrimer conjugates were added at concentrations varying from 0-20 µM in fresh 

culture medium (DMEM) and incubated for an additional 24 hours under 5% CO2 at 37°C.  

DMEM with no dendrimer conjugates were placed in wells and used as the controls.  Cell 

viability was analyzed using MTT Cell Proliferation Assay (Molecular Probes). Briefly, 

medium from each well was removed.  Subsequently 110 µL of 1 mM MTT solution was 

added to each well and incubated for 4 hours at 5% CO2 at 37°C.  85 µL was removed 

from each well and replaced with 75 µL of DMSO and let to incubate for 1 additional hour.  

The absorbance was measured at 540 nm using a microplate reader (Spectra MAX 250) 

and analyzed by SOFTmax PRO software. Cell viability was calculated as (absorbance 

of treated cells/absorbance of control cells) x 100%. 

3.2.8 Cellular Internalization of the Dendrimer Conjugates Analyzed by 

Fluorescence Activated Cell Sorting (FACS) 

A549 cells were seeded at 300,000 cells per well in a 24-well plate in DMEM 

medium supplemented with 10% FBS and 1% AB and cultured at 37°C with 5% CO2. The 
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following day, the cells were pre-incubated in 1xHBSS (Hank’s Balanced Salt Solution) 

for 30 minutes prior to incubation of various dendrimer conjugates at 1 µM in 1xHBSS 

adding 500 µL per well at various time points ranging from 0.25 hours to 5 hours.  Cells 

were then washed with 1xHBSS (pH 7.2) and 0.2 mL of 0.1% w/v of Trypan Blue was 

added to each well to quench any fluorescence associated the conjugates that are 

retained on the surface of cells.  The cells were then again washed with 1xHBSS and 

removed from each well.  The cells were then centrifuged at room temperature at 1500 

rpm for 5 min to form a pellet.  The pellet was resuspended in 1XHBSS buffer to be 

analyzed via FACS using a HWCRC 615- BD LSR II Analyzer. The data was analyzed by 

FlowJo software.  The median fluorescence intensity (MFI) of FITC was used as to 

analyze the rate of cellular internalization of dendrimer conjugates into the cells as a 

function of the dendrimer chemistry and time after incubation. 

3.2.9 Colocalization of Dendrimer Conjugates by Confocal Microscopy 

A549 cells were seeded at 300,000 cells per well in a 24-well plate containing a 

circular cover glass in each well 24 hours prior to treatment.  500µL of a 2µM dendrimer 

conjugate solution in 1xHBSS was added to each well and incubated for 5 hours at 5% 

CO2 and 37°C.  The cells were then stained with 100 nM of Mitotracker Deep Red FM 

(Life Technologies) for 30 minutes followed by Hoechst 3342-Nuc Blue stain for 15 

minutes.  The cells were washed twice with 1xHBSS between each staining.  The cells 

were then fixed with 4% p-Formaldehyde for 15 minutes.  The colocalization of the 

dendrimer conjugates to the mitochondria was analyzed using a Zeiss LSM 780 confocal 

microscope with a 40x oil objective lens.  The Pearson’s Correlation Coefficient (PCC) 

was determined by analyzing each image using Volocity Software to quantify the degree 
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of colocalization between the dendrimer conjugates (FITC) and the mitochondria 

(Mitotracker Deep Red FM).  

3.2.10 Statistical Analysis 

All data is presented as a mean ± standard deviation.  The mean was calculated 

from a minimum of three independent trials for each measurement (n ≥ 3).  One-way 

analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test or an 

unpaired t-test was performed using GraphPad Prism 5 software.  Means were 

considered statistically significant if p < 0.05.  

3.3  Results 

3.3.1 TPP and PEGTPP Conjugation  

FITC was conjugated to the primary amines of G4NH2 to prepare fluorescently-

labeled dendrimers (G4NH2-FITC), as shown in Scheme 3.1A. 
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Scheme 3.1. Synthesis of A) FTIC-labeled, generation 4, amine-terminated 
poly(amidoamine) dendrimer (G4NH2-FITC); B) TPP-conjugated, FITC-labeled 
G4NH2 (G4NH2-TPP); and C) (i) TPP-conjugated poly(ethylene glycol) 1000 MW 
(PEGTPP), and (ii) PEGTPP-conjugated, FITC-labeled G4NH2 (G4NH2-PEGTPP). 
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The conjugation of FITC was confirmed by 1H NMR, as shown in Figure A1 in 

Appendix A.  The results indicate 2 FITC molecules conjugated per dendrimer on average 

as calculated by peak area represented by protons on FITC in peak at 6.4 ppm (labeled 

FITC – Figure A1).  Conjugation of FITC is done in order to follow the rate of cellular 

internalization and co-localization of the nanocarriers.  The size (HD) and ζ of the FITC-

conjugated G4NH2 (also called G4NH2-0TPP) is shown in Table 3.1. 

Table 3.1. The hydrodynamic diameter (HD) and surface charge (zeta 
potential, ζ) of the dendrimer conjugates measured by light scattering (LS).  
Measurements were performed in water.  Data expressed as mean ± 
standard deviation (n ≥ 3).  All carriers have an average of 2 FITC per G4NH2. 

Compound 
Light Scattering 

HD ± s.d# (nm) ζ ± s.d# (mV) 

G4NH2-0TPP 6 ± 2 30 ± 7 

G4NH2-5TPP 7 ± 3 34 ± 7 

G4NH2-10TPP 6 ± 2 43 ± 8 

G4NH2-5PEGTPP 8 ± 2 53 ± 8 

G4NH2-10PEGTPP 9 ± 3 18 ± 6 

G4NH2-21PEGTPP 12 ± 4 14 ± 5 

 

TPP and PEGTPP were subsequently conjugated to G4NH2-FITC, as shown in 

Scheme 1B and C, respectively.  Two TPP densities were targeted.  An average of 5 and 

10 TPP molecules were attached to each G4NH2-FITC dendrimer, as confirmed by 1H 

NMR in deuterium Oxide (D2O) solvent measured at 400 MHz on Aligent Mercury 

Spectrometer - shown in the 1H NMR spectra Figure A1, Appendix A. The peak areas 

representing the protons found on the phenyl rings on TPP (two peaks found between 

7.6-7.8 ppm, peak f – Figure A1) and peak found on alkyl chain of TPP (peak at 1.8-1.9 

ppm, peak e – Figure A1) were used to calculate the average numbers of TPP per 
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dendrimer (Figure A1).  These conjugates were termed as follows: G4NH2-5TPP, and 

G4NH2-10TPP.  The HD and ζ of the TPP conjugates are also shown in Table 3.1. 

The G4NH2-TPP conjugates all had similar sizes, between 6-7 nm in diameter.  

The ζ for all the G4NH2-TPP conjugates was positive.  A slight increase in ζ from G4NH2-

0TPP to G4NH2-5TPP to G4NH2-10TPP was observed, but it was not statistically different 

between each of the conjugates (Table 3.1).  Therefore, each of the G4NH2-TPP 

conjugates was similar in size as well as containing similar positively-charged surfaces. 

To evaluate the effect of PEG on the surface properties and mitochondrial targeting 

of G4NH2 dendrimers, TPP was conjugated to PEG to form PEGTPP, which in turn was 

conjugated to G4NH2-FITC dendrimers to form G4NH2-FITC-PEGTPP – also called 

simply G4NH2-PEGTPP.  The successful conjugation PEGTPP to G4NH2-FITC was also 

confirmed by 1H NMR, as shown in Figure A1 in Appendix A. The peak areas representing 

the phenyl rings on TPP (7.6-7.8 ppm, peak f – Figure A1), the peak area representing 

PEG chain (3.6 ppm, peak g – Figure A1) and peak area of CH2 group near the amide 

bond between the dendrimer and PEG (4.0 ppm, peak h – Figure A1) were used to 

estimate the average numbers of PEGTPP molecules added per dendrimer.  An increase 

in PEGTPP to G4NH2-FITC-0TPP feeding ratio resulted in an increase in density of 

PEGTPP.  An average of 5, 10, and 21 PEGTPP molecules were attached to each G4NH2 

dendrimer, as confirmed by 1H NMR spectra as seen in Figure A1 in Appendix A. 

The HD and ζ of these conjugates were also determined and shown in Table 3.1.  

The HD of the conjugates increased slightly from 8 nm to 12 nm, as the density of 

PEGTPP conjugated to G4NH2 increases from 5 PEGTPP to 21 PEGTPP.  The ζ for 

G4NH2-5PEGTPP increased to +53 ± 8 mV, being the highest ζ of all conjugates.  
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However, as the PEGTPP density increases from 10 (G4NH2-10PEGTPP) to 21 (G4NH2-

21PEGTPP), the ζ of the conjugates decreased to +18 ± 6 mV and +14 ± 5 mV, 

respectively, remaining overall positively charged (Table 3.1). 

3.3.2 Cytotoxicity of the Dendrimer Conjugates 

The cytotoxicity of the various dendrimer conjugates was determined using the 

MTT assay.  TPP- and PEGTPP-conjugates were incubated with A549 cells for 24h at 

increasing concentrations of the respective conjugates, and their cellular viability 

assessed.  The results are summarized in Figure 3.1.  

 

Figure 3.1. Cell viability of A) G4NH2-TPP conjugates and B) G4NH2-PEGTPP 
conjugates measured by MTT assay at 24h incubation and increasing nanocarrier 
concentration. *, **, *** represents the statistical analysis between the control group 
indicated at 0 µM representing 100% viability. ●, ●●, and ●●● represents the 
statistical analysis between G4NH2-0TPP group and other indicated dendrimer 
conjugates (*/● p < 0.05, **/●● p < 0.01 ***/●●● p < 0.001). 
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The results demonstrate that the density of TPP as well as that of PEGTPP does have 

an effect on the toxicity of the dendrimer conjugate.  As the TPP density increases to 10 

TPP molecules per dendrimer, a greater cellular toxicity is observed when compared to 

G4NH2- 0TPP, at all concentrations investigated.  Furthermore, a statistical difference 

between that and control is seen at a much lower concentration (2.5 µM), which is not 

observed for the other G4NH2-TPP conjugates.  On the other hand, G4NH2-5TPP did not 

show a significant increase in cytotoxicity when compared to G4NH2-0TPP.  These two 

groups had similar differences to control (100% cell viability) with toxicity (statistical 

difference from control) only observed at 10 µM or greater concentration.  The G4NH2-

5TPP conjugate demonstrated a decreased toxicity compared to G4NH2-0TPP at 2.5 and 

5 µM concentrations and no statistical difference at all the other concentrations tested.  

Therefore, a low enough TPP density (5 or below) has no significant effect on the toxicity 

of the dendrimer. 

The attachment of PEG as a linker between the TPP targeting moiety and the 

G4NH2 dendrimer also had an effect on toxicity.  The G4NH2-5PEGTPP is significantly 

more cytotoxic than G4NH2-0TPP.  Of all the groups, G4NH2-5PEGTPP was the most 

toxic early on, showing a statistical difference from 100% cell viability as early as 1.25 µM 

and being statistically different from G4NH2-0TPP at all concentrations but 20 µM, where 

there was no statistical difference in toxicity.  However, the dendrimer conjugates 

containing a higher density of PEGTPP showed a decrease in cytotoxicity compared to 

G4NH2-0TPP.  G4NH2-10PEGTPP only showed a statistical difference from 100% cell 

viability at 20 µM.  The G4NH2-10PEGTPP conjugate only demonstrated a significant 

difference in cytotoxicity at 2.5, 10, and 20 µM, being less cytotoxic than G4NH2-0TPP.  
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G4NH2-21PEGTPP did not show any significant difference in cytotoxicity when compared 

to G4NH2-0TPP when both are compared to 100 % cell viability, with both groups showing 

a statistical difference at 10 µM.  The only statistical difference between G4NH2-0TPP 

and G4NH2-21PEGTPP was seen at 20 µM. Therefore, the addition of PEGTPP at a 

density greater than 5 PEGTPP did (positively) affect the toxicity of the dendrimer 

conjugates; it decreased their toxicity, showing statistical differences compared to 

G4NH2-0TPP at higher concentrations tested (those concentrations where G4NH2-0TPP 

showed a statistical difference from 100% viability). 

3.3.3 Cellular Internalization of Dendrimer Conjugates Analyzed by FACS 

The extent and rate of internalization of the dendrimer conjugates was determined 

by FACS.  The effect of TPP density as well as PEGTPP density was analyzed.  The 

median fluorescence intensity (MFI) as a function of contact time between the various 

conjugates and A549 cells is summarized in Figures 3.2A and B. 

As the density of TPP in G4NH2-TPP increases, the rate and extent of 

internalization of the conjugate is observed to increase dramatically (Figure 2A).  G4NH2-

5TPP showed a 3.5 ± 0.3-fold increase in internalization over the various time points when 

compared to G4NH2-0TPP, while the MFI of G4NH2-10TPP increased 10.0 ± 2.0-fold 

(except at 0.25 hour, which showed a ~20-fold increase) in internalization as compared 

to G4NH2-0TPP at the various time intervals measured. G4NH2-10TPP also showed a 

3.4 ± 0.9-fold increase in internalization compared to G4NH2-5TPP at various time points.  

Similar trends are seen when the rates of internalization are compared.  The 

internalization rates for G4NH2-0TPP, G4NH2-5TPP, and G4NH2-10TPP are 214.01 

a.u./hr, 681.4 a.u./hr, and 2050.5 a.u./hr, respectively.  A clear increase in rate with the 
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increase in TPP density of the dendrimer is seen: ~ 3-fold increase for G4NH2-5TPP when 

compared to G4NH2-0TPP and a ~ 10-fold increase for G4NH2-10TPP compared to 

G4NH2-0TPP.  Also, there was a ~ 3-fold increase in rate when comparing G4NH2-10TPP 

group with G4NH2-5TPP group. 

Therefore, the conjugation of TPP to dendrimer is seen to lead to an increase in the rate 

and extent of internalization of the dendrimer. 

The effect of PEGTPP on internalization of the dendrimers on A549 cells was also 

analyzed.  The results are compared against those for G4NH2-0PEGTPP (Figure 2B).  As 

seen in Figure 2B, at the final time point (5 h), no statistical difference in the extent of 

Figure 3.2.  Cellular uptake of A) G4NH2-TPP conjugates and B) G4NH2-PEGTPP 

conjugates analyzed by FACS.  The median fluorescence intensity (MFI) provided by 

FITC labeling of the various conjugates was compared to bare FITC-labeled 

dendrimer (0 TPP) at various time points (* p < 0.05, ** p < 0.01 *** p < 0.001). 
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internalization is seen between G4NH2-5PEGTPP and G4NH2-0PEGTPP.  However, the 

MFI is seen to decrease when compared to G4NH2-0PEGTPP as the density of PEGTPP 

increased to 10PEGTPP, and further decrease at 21PEGTPP (Figure 2B).  G4NH2-

10PEGTPP showed a 3.0 ± 1.3-fold decrease in MFI and G4NH2-21PEGTPP showed a 

5.0 ± 2.0-fold decrease in MFI at various time points when compared to G4NH2-

0PEGTPP.  By 5 hours, the internalization decreased to 1.7-fold for G4NH2-10PEGTPP 

and 3.0-fold for G4NH2-21PEGTPP.  There is also a 1.8 ± 0.2-fold decrease in 

internalization at various time points when comparing G4NH2-21PEGTPP to G4NH2-

10PEGTPP.  The rates of internalization for G4NH2-5PEGTPP, G4NH2-10PEGTPP, and 

G4NH2-21PEGTPP are as follows: 196.3 a.u./hr, 125.3 a.u./hr, and 69.5 a.u./hr, 

respectively. There is no significant change in the rate of internalization between G4NH2-

5PEGTPP and G4NH2-0TPP, while a decrease in rate of ~2 between G4NH2-10PEGTPP 

and G4NH2-0TPP and decrease of ~3 between G4NH2-21PEGTPP and G4NH2-0TPP 

was observed.  A ~2-fold decrease in rate of uptake is observed when comparing G4NH2-

21PEGTPP and G4NH2-10PEGTPP.   

The effect of TPP attached to the end of PEG on the internalization of the 

conjugates was also evaluated by comparing the internalization of G4NH2-10PEGTPP to 

that of G4NH2-10PEG (no TPP), as shown in Figure 3.3.  
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After 1 h, a significant increase in the extent of internalization is seen for the conjugate 

containing TPP.  At 1 hour, the internalization of G4NH2-10PEGTPP is 2.8-fold greater 

than that for G4NH2-10PEG.  From 2 h to 5 h, the internalization G4NH2-10PEGTPP is 

4.0 ± 0.3-fold that of G4NH2-10PEG.  When comparing the rates of internalization, 

G4NH2-10PEGTPP (125.3 a.u./hr) is ~ 4-fold greater than that for the G4NH2-10PEG 

conjugate (29.5 a.u./hr).  Thus, the presence of TPP on PEG does affect the 

internalization of the dendrimer by increasing its rate and extent of cellular uptake.  

3.3.4 Colocalization of Dendrimer Conjugates 

The mitochondrial targeting ability of the dendrimer conjugates was evaluated by 

confocal microscopy.  The dendrimer conjugates were labeled with FITC in order to 

quantify their colocalization with the mitochondria, which were stained with Mitotracker 

Deep Red FM.  Figure 3.4 shows the results of the incubation of the FITC-labeled 

dendrimer conjugates with mitochondria in A549 cells.  

 

Figure 3.3.  A comparison of the cellular uptake of G4NH2-10PEG and G4NH2-
10PEGTPP conjugates analyzed by flow cytometry.  The MFI provided by FITC 
labeling of the various conjugates was compared between the two groups using two-
tailed t test (* p < 0.05, ** p < 0.01 *** p < 0.001).  
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Figure 3.4. Colocalization between dendrimer (green) and mitochondria (red) to assess 
the targeting ability of the various G4NH2-TPP and G4NH2-PEGTPP conjugates. The 
blue represents the nucleus (Hoeschst 3342-Nuc Blue stain), the red represents 
mitochondria (Mitotracker Deep Red FM) and green represents the dendrimer (FITC).  
The yellow color represents the overlap between the dendrimer and mitochondria 
signals. The dendrimer conjugates are seen in the following order: A) G4NH2-0TPP, B) 
G4NH2-5TPP, C) G4NH2-10TPP, D) G4NH2-5PEGTPP, E) G4NH2-10PEGTPP, and F) 
G4NH2-21PEGTPP. 
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The last (fourth) panel indicates the merged areas of co-localization between the 

green signal from the FITC-labeled dendrimer conjugates (first panel) with the red signal 

from stained mitochondria (second panel).  The co-localization produced a yellow color.  

The third panel shows the nuclei in blue.  The degree of co-localization was quantified 

with the help of the Pearson’s correlation coefficient (PCC) for the various conjugates.  

The results are summarized in Figure 3.5.  

 

All dendrimer conjugates demonstrated an increased targeting toward the 

mitochondria compared to G4NH2 bearing no TPP targeting moiety.  The dendrimer 

conjugate that showed the highest targeting ability was G4NH2-10TPP – statistically 

significant enhancement in targeting as compared with all other conjugates.  All other 

dendrimer conjugates, excluding G4NH2-10TPP, had the same ability to target 

mitochondria, which was significantly greater than the control.  Therefore, the presence 

Figure 3.5. Pearson’s Correlation Coefficient (PCC) of various dendrimer conjugates 
comparing the overlap of FITC (dendrimer) with Mitotracker Deep Red FM 
(mitochondria) based on confocal microscopy.  *** compares each dendrimer 
conjugate with G4NH2-0TPP dendrimer. ●●● represents the comparison between 
indicated groups.  Data represents a mean ± standard deviation (***/●●● p < 0.001, 
n.s.d. = not statistically different). 
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of PEG as a flexible linker between the dendrimer and TPP did not affect the mitochondrial 

targeting ability of the conjugates. 

3.4 Discussion  

Cellular organelle drug targeting has many potential advantages including a 

decrease in the side effects as well as enhancement of the efficacy of the chosen 

therapeutic molecules.232  Mitochondrial targeting continues to gain attention in the 

scientific community since the discovery that many diseases of great medical relevance 

are associated with mitochondrial dysfunction.50, 53, 84, 227-230  Mitochondrial dysfunction 

can occur due to mutations in mitochondrial DNA (mtDNA) or alterations in mitochondrial 

signal transduction pathways.231  Due to a lack of therapeutic options for many 

mitochondrial diseases, there is a great need for the development of alternative 

therapeutic strategies that target mitochondria.84, 231 

TPP has been explored as a mitochondrial targeting agent due to its delocalized 

cationic and lipophilic nature.  TPP is attracted to and tends to cross cellular and 

mitochondrial membranes to preferentially accumulate in the mitochondria.50, 84, 172, 233  

TPP has been utilized to target a range of therapeutics, including antioxidants,176, 226, 229 

anticancer agents,54, 87, 90, 176, 235 peptides,92 nucleic acids,237 and photsensitizers238, 239 

towards the mitochondria.  These have included TPP conjugated directly to therapeutic 

of choice 54, 92, 226 as well as TPP conjugated to a nanocarrier87, 90, 176, 235, 237, 239 for targeted 

therapeutic delivery.  Nanocarriers are of great interest in the delivery of a variety of drugs 

as they can be used to effectively alter the behavior of the drug in vivo,35 improve efficacy 

of the drug,35, 36 minimize side effects,35, 36 target specific tissues,35 control drug  release, 

35 and show great promise in the treatment of a variety of diseases.36 
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In this work we seek to further recent work that has demonstrated that the direct 

attachment of TPP to G4NH2 leads to an enhancement in targeting of the mitochondria231 

by systematically investigating the effect of the number density of TPP conjugated to 

G4NH2 on the mitochondrial targeting ability of the DNCs.  We propose two conjugation 

strategies: (i) the direct conjugation of TPP to dendrimer, and (ii) the conjugation of TPP 

to G4NH2 through a PEG linker.  PEG is relevant in many ways.  PEG may act as a 

flexible linker thus potentially providing for a greater opportunity for the conjugated TPP 

to interact with the mitochondrial membrane – perhaps at lower number density.  

PEGylation also helps enhance aqueous solubility of the nanocarrier,116, 122 increase 

biocompatibility,116, 241 mediate the interaction of the dendrimer drug carrier with the 

physiological environment,116, 122 and enhance its pharmacokinetic profile.116, 241 

Three levels of direct TPP conjugation were investigated: no TPP (G4NH2-0TPP); 

5 TPP (G4NH2-5TPP) and 10 TPP (G4NH2-TPP).  We observe from Table 3.1 that the 

direct conjugation of TPP to the dendrimer did not have a significant effect on the size 

(HD) or surface charge (ζ) of the nanocarriers.  The HD remained around 6-7 nm for all 

G4NH2-TPP.  The ζ seems, on average, to increase as the density of TPP increases with 

a value of +43 mV for G4NH2-10TPP and +34 mV for G4NH2-5TPP, while in the absence 

of TPP, the surface charge was +30 mV.  While under physiological conditions (where 

pH = 7.4) the primary (surface) amine groups of NH2 are expected to be fully protonated 

to NH3
+,244-246 at the conditions where ζ was measured (water), the pH increases during 

protonation, and an equilibrium is reached before full protonation.  The conjugation of 

TPP as a delocalized cation should thus result in an increase in the overall surface charge 
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of the system, as it will tend to substitute amine groups that would potentially otherwise 

not be protonated. 

There is a direct correlation between the surface charge of the nanocarriers and 

their rate and extent of cellular internalization within A549 cells (Figure 3.2).  The 

internalization of G4NH2-5TPP is statistically significantly higher than that for G4NH2-

0TPP, and so is that for G4NH2-10TPP, which was also higher than that for G4NH2-5TPP.  

A similar trend was observed in terms of the rate of internalization.  This increase in rate 

and extent of internalization with increase in TPP density can be attributed to the cationic 

and lipophilic nature of the TPP that allows it to interact with the cellular membrane given 

its negative potential and hydrophobic nature.50, 84, 172, 233  A similar correlation was 

observed in terms of co-localization with the mitochondria (Figures 3.4 and 3.5).  While in 

the absence of TPP (G4NH2-0TPP) the PCC was only 0.15 ± 0.09, PCC for G4NH2-5TPP 

was 0.50 ± 0.06, and that for G4NH2-10TPP 0.66 ± 0.12, being both statistically 

significantly higher than control - and at 10 TPP higher than at 5 TPP.  However, as the 

density of TPP increases so does the toxicity of the conjugate. A comparison of the half 

maximal inhibitory concentration (IC50), the concentration of conjugate required to inhibit 

biological function (in vitro potency – A549 % cell viability) clearly demonstrates this.  

G4NH2-10TPP has an IC50 of 2.95 µM, while G4NH2-0TPP’s IC50 is found at significantly 

higher concentrations (greater than 20 µM) (54 ± 9 % at 20 µM) ~ 7 fold greater (Figure 

3.1).  At the same time, it is observed that the addition of 5 TPP does not affect the toxicity 

profile of the conjugate – no statistical difference compared to G4NH2-0TPP. 

In conclusion, the direct conjugation of TPP is seen to promote the rate and extent 

of cellular internalization as well as the mitochondrial targeting.  However, the maximum 
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density of TPP is limited by toxicity effects.  For the series of conjugates investigated in 

this work, it seems that 5 TPP represents the optimum number of TPP, where a significant 

enhancement in targeting is observed, while the toxicity profile of the conjugate is not 

altered relative to the bare dendrimer. 

In order to address potential limitations of the direct TPP conjugation strategy 

discussed earlier, the conjugation of TPP through a PEG linker to G4NH2 is also 

proposed.  Three levels of PEGTPP density, plus the control were investigated: (i) no 

PEGTPP (control, G4NH2-0TPP); (ii) 5PEGTPP (G4NH2-5PEGTPP); (iii) 10PEGTPP 

(G4NH2-10PEGTPP); and (iv) 21PEGTPP (G4NH2-21PEGTPP). 

The addition of PEGTPP is seen to lead to a significant change in the HD and ζ of 

the dendrimers – Table 3.1.  The HD of the dendrimers is seen to increase with an 

increase in PEGTPP density with a dendrimer HD at 6 ± 2 nm for G4NH2-0TPP and 

increasing to 8 ± 2 nm, 9 ± 3 nm, and 12 ± 4 nm for G4NH2-5PEGTPP, G4NH2-

10PEGTPP, and G4NH2-21PEGTPP, respectively.  The addition of PEGTPP, as 

expected,122, 247 leads to an increase in the overall HD as the PEG forms an outer polymer 

layer.  This PEG layer may has been shown to either interact with the protonated amines, 

extend outward, or a mix of both depending on the density and size of PEG.122, 247 

The surface charge for G4NH2-10PEGTPP and G4NH2-21PEGTPP decreased 

compared to the control - G4NH2-0TPP.  One could expect that the conjugation of PEG 

alone would lead to a decrease in the overall system charge, but since the delocalized 

cation TPP is conjugated to PEG, this effect should be somewhat mute.  Nevertheless, 

the ether oxygen of PEG may also interact with the amine groups of G4NH2, further 

reducing the system charge,122, 241 and this is the mechanism we expect to be operating 
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here.  However, surprisingly, G4NH2-5PEGTPP has a ζ that is larger than the ζ seen for 

all the dendrimer conjugates investigated in this work.  The reasons for such a large ζ 

have not been fully elucidated yet, but one could hypothesize that at higher PEG densities 

of 10PEGTPP and 21PEGTPP (but not too high), the protonated amines can interact with 

a large number of ether oxygens247 without requiring the positively charged TPP ions 

conjugated at the end of PEG to get to close to the positively charged surface of the 

G4NH2 dendrimer.  There is also a greater chance of the ether groups of PEG to interact 

and bury TPP counterions.  At lower PEGTPP densities, the interaction between 

protonated amines from the dendrimer and ether oxygen will more likely lead to the close 

approximation of the charged TPP to NH3
+ groups on the dendrimer surface, which is 

unfavorable.  In that case, the presence of TPP would reduce the neutralization of the 

amine groups of dendrimers by PEG ethers, thus increasing the overall ζ.  The synthesis 

and characterization of these conjugates were repeated several times and by different 

group members to confirm this behavior.  The toxicity and internalization of these carriers 

also follow a trend based on ζ, further supporting the results discussed here.  Therefore, 

the PEGTPP density plays a critical role in terms of characteristics of G4NH2. 

The use of the PEG as a linker to TPP is seen to produce the desirable 

characteristic of reduced cytotoxicity compared to the conjugates formed with the direct 

TPP conjugation, except for G4NH2-5PEGTPP (Figure 3.1).  G4NH2-10PEGTPP and 

G4NH2-21PEGTPP do not show any toxicity up to 5 µM concentration.  At high 

concentrations, they were also significantly less toxic than the non-conjugated G4NH2-

0TPP control (bare dendrimer).  The toxicity profile of G4NH2-5PEGTPP seems to 

correlate with its high surface charge, showing some toxicity at low concentrations, and 
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being significantly more toxic than the non-conjugated control (G4NH2-0TPP) at all 

concentrations studied.  While a reduction in toxicity is achieved for the TPP-conjugated 

dendrimers by using a PEG linker, the presence of PEG negatively affects the dendrimer 

internalization (Figure 3.2).  As the density of PEGTPP increases, the rate and extent of 

internalization in A549 cells decreases, except for G4NH2-5PEGTPP, which remains 

relatively unchanged compared to the non-conjugated control (G4NH2-0TPP).  It is 

interesting to note that when compared to the control of PEGylated dendrimer with no 

TPP (Figure 3 – G4NH2-10PEG vs. G4NH2-10PEGTPP), it is observed that the presence 

of TPP significantly enhances the rate and extent of internalization indicating the 

relevance of TPP as a potentially general strategy for the enhancement of cellular 

internalization of PEGylated dendrimers. 

G4NH2-FITC-5PEGTPP had similar characteristics to that of bare dendrimer 

(G4NH2-FITC-0TPP) in terms of internalization and cytotoxicity.  This can be attributed to 

a balance between the TPP increasing internalization while the PEG decreasing 

internalization.  Therefore, both groups contain similar properties.  However, the main 

difference between these groups is the localization of the dendrimer into the mitochondria 

which is seen in the G4NH2-FITC-5PEGTPP group and not in the G4NH2-FITC-0TPP 

group.  Therefore, the G4NH2-FITC-5PEGTPP group acts very similarly in vitro as bare 

dendrimer while localizing in the mitochondria.  This can be a useful strategy if similar 

dendrimer properties (surface charge, rate of internalization, biodistribution, etc.) are 

required for a particular application.  However, if the application requires a higher solubility 

of therapeutic, increased circulation time, reduced toxicity (as seen with PEGylated 

dendrimers) then a higher density of PEGTPP can be used, which would alter these 
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various parameters while maintaining the mitochondrial targeting ability of the 

nanocarrier.   

While the presence of PEG as a linker to TPP in G4NH2-PEGTPP decreases the 

rate and extent of cellular internalization at higher densities (10 PEGTPP and above), co-

localization results (Figure 3.4 and 3.5) demonstrate that they are still actively targeting 

mitochondria with PCC similar to G4NH2-5TPP and statistically significantly higher than 

G4NH2-0TPP.  The PCC of G4NH2-PEGTPP is not affected by the density of PEGTPP 

and is only smaller to that of G4NH2-10TPP, which had pronounced toxicity.  The ability 

of the G4NH2-PEGTPP to target mitochondria equally well, irrespectively of the density 

of TPP, may be hypothesized to be due to the fact that TPP is further expanded from the 

surface of the nanocarrier when conjugated to PEG and also due to the flexibility of the 

linker that may allow as many TPP as possible to better interact with its target – the 

mitochondria. 

The use of TPP conjugated directly or through a PEG linker has shown to 

effectively target dendrimer nanocarriers toward the mitochondria, which present a useful 

strategy for delivery of therapeutics to the mitochondria.  The direct conjugation of TPP 

to the dendrimer only requires a small density of TPP (~ 5 TPP) in order to be effective in 

targeting the dendrimer to the mitochondria as well as increasing internalization without 

producing toxic effects.  The use of PEG can also modulate various properties of the 

dendrimer (solubility, biocompatibility, interaction of dendrimer with physiological 

environment, pharmacokinetic profile) and is thus a promising linker between the 

dendrimer nanocarrier and TPP.  In this case we show that the presence of PEG helps 
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decrease toxicity of the nanocarriers while still maintaining their mitochondrial targeting 

ability. 

3.5 Conclusions 

The in vitro characteristics of mitochondrial targeting G4NH2 conjugates were 

assessed in this work using a human alveolar carcinoma cell model (A549 cells).  Two 

strategies of conjugation of the mitochondrial targeting moiety TPP were investigated: 

direct TPP conjugation (G4NH2-TPP) or conjugation of TPP to G4NH2 through a flexible 

PEG linker (G4NH2-PEGTPP).  Both strategies result in significant enhancement in 

mitochondrial targeting relative to the non-conjugated control.  While direct TPP 

conjugation shows a direct correlation between targeting and TPP number density, the 

conjugation of TPP through a PEG linker results in high targeting for all TPP densities 

with targeting not being affected by the degree of PEGylation.  Therefore, both direct and 

indirect conjugation, separately or in combination, are potential strategies for the delivery 

of therapeutics to address mitochondrial dysfunctions.  The conjugation of PEGTPP may 

be used to enhance the cellular internalization of PEGylated dendrimers and target 

mitochondria, so as to reach high local concentration of drug-conjugated therapeutics 

near the mitochondria such as, for example, ROS scavengers.226  This is relevant as often 

times PEGylation is a required motif in the design of the nanocarriers so as to improve 

their function – e.g. aqueous solubility of the conjugate116, 122 or to modulate the 

interactions with the physiological environment.116, 122 Direct TPP conjugation may be 

used in those cases where small molecules need to reach not only high local 

concentration near the mitochondria, but also be internalized.  For example, the 

conjugation of doxorubicin (DOX) to TPP (DOX-TPP) has been recently demonstrated as 
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a potential strategy to fight multi-drug resistant cancer, with DOX-TPP enhancing levels 

of apoptosis in both wild-type and DOX-resistant human breast carcinoma cell line as 

compared to DOX alone.54  The direct conjugation of many DOX-TPP (or other small 

molecules) to dendrimers may thus result in enhanced therapeutic efficacy. As more 

evidence accumulates the involvement of mitochondrial signaling process, bioenergetics, 

and biosynthesis in tumorigenesis,248 the major challenges  still remain to design 

therapeutic strategies that increase the presence of anticancer drugs that can directly 

target the mitochondria,  which the TPP-targeted dendrimer has great potential in 

addressing. 
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CHAPTER 4 - TPP-DENDRIMER NANOCARRIERS FOR SIRNA DELIVERY TO THE 
PULMONARY EPITHELIUM AND THEIR DRY POWDER AND METERED-DOSE 
INHALER FORMULATIONS 
 
4.1 Introduction 

Synthetic small interfering RNA (siRNA) is a promising therapeutic for the 

treatment of a variety of lung diseases including asthma,249 chronic obstructive pulmonary 

disease (COPD),250 cystic fibrosis,251 viral infections,252-254 pulmonary tuberculosis,255 

lung cancer,190, 256 and also for the treatment of the so called “non-druggable” diseases.257 

Despite recent developments and the many promising applications of siRNA therapeutics, 

there are still many challenges that hinder the efficient and safe use of siRNA to treat 

pulmonary disorders including the formulation of siRNA and their vectors for efficient local 

lung delivery, 96, 97 and the extra and intracellular barriers that exist for the transport of 

bioactive siRNA to the cytoplasm of relevant cells in the lungs.98, 99 

Non-viral vectors such as cationic polymers represent one of the promising 

approaches for the efficient delivery of siRNA.59 Amine-terminated, poly(amidoamine) 

(PAMAM) dendrimers have been widely investigated as gene delivery vectors including 

carriers of siRNA, 64 and their use in oral inhalation to the lungs.96, 127, 258  PAMAM 

dendrimers are hyperbranched polymers with uniform structure and size and with 

multifunctional modifiable surface groups.34 Amine-terminated PAMAM dendrimers carry 

a positive surface charge due their protonatable surface primary amines and can thus 

serve to induce the formation of complexes with anionic siRNA via electrostatic 

interactions.64, 259  Such nanoscale structures, termed dendriplexes, have been shown to 

promote cellular internalization of siRNA. However, gene knockdown efficiency is 
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relatively low, and cytotoxicity profiles in models of the pulmonary epithelium are not very 

favorable.96, 99  

In order to increase the transfection efficiency and biocompatibility of PAMAM 

dendrimers, a variety of modifications to the dendrimer surface have been explored.260 Of 

these modifications, the use of a triphenylphosphonim (TPP) ion has been recently 

reported via direct conjugation to PAMAM dendrimers.33, 237, 261 TPP is a delocalized 

lipophilic cation and well-known mitochondrial-targeting agent.233 The conjugation of TPP 

to PAMAM dendrimers enhances mitochondrial targeting, as well as internalization and 

accumulation of dendrimers into cells while exhibiting relatively low cytotoxicity.33, 261 TPP 

conjugation has led to enhanced delivery of DNA/dendrimer complexes in vitro and their 

improved transfection ability.237 Therefore, the modification of TPP to amine-terminated 

PAMAM dendrimers holds great promise in enhancing the transfection ability and 

biocompatibility of dendrimers for siRNA delivery to the lung tissue.  

Oral inhalation (OI) is promising route for local siRNA delivery to the lungs as it 

avoids systemic degradation262 and poor lung targeting associated with i.v. 

administration.263 Pressurized metered dose inhalers (pMDIs) and dry powder inhalers 

(DPIs) are the two most widely used portable inhalation devices.97, 264 In a pMDI, the 

therapeutic particles are suspended in the propellant (hydrofluoroalkanes – HFAs).97 The 

propellant aerosolizes the therapeutic for inhalation when the device is actuated.97, 264 

DPIs allow for the inhalation of dry powders as an aerosol cloud upon breath actuation.97 

In order to achieve successful delivery of siRNA to the lungs using such portable inhalers, 

the nanoscale dendriplexes must be formulated into particles that form aerosols with 

optimum aerosol diameters within the range of 1-5 µm.  This process must be done 
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without compromising the biological activity of siRNA.99 We have previously reported 

successful use of spray drying technique with sugar excipients to formulate dendriplexes 

into suitable micron-sized particles that results in optimum aerosol sizes when formulated 

in pMDIs.96 The use of spray drying can also be easily extended for preparation of DPI 

formulations as well, and has been shown to work successfully to formulate micron 

particles of PLGA-siRNA nanoparticles via spray drying with sugar excipients.265 

Considering the challenges and opportunities stated above, the goal of this study 

was twofold: (i) to design a PAMAM-based dendrimer conjugate that led to improvements 

in gene knockdown efficiency in an in vitro model of the pulmonary epithelium when 

compared to the unmodified amine-terminated counterpart, (ii) and to develop efficient 

strategies for the formulation of such dendriplexes in portable oral inhalation devices.  We 

conjugated generation 4, amine-terminated PAMAM dendrimers (G4NH2) with increasing 

TPP densities (0, 4, 8, 12 TPP/dendrimer).  Complexes of G4NH2-TPP dendrimers with 

siRNA (G4NH2-TPP-dendriplexes) at various N/P ratios were prepared and 

characterized. The gene knockdown efficiency and toxicity of these G4NH2-TPP-

dendriplexes (simply, TPP-dendriplexes) was tested in an in vitro model of the pulmonary, 

namely stably-transfected, green fluorescent protein (GFP) expressing A549 cells. The 

most effective TPP-dendriplex system was selected to be formulated in portable OI 

devices.  Micron-sized particles of the TPP-dendriplex were prepared using mannitol as 

an excipient and spray dried.  The aerosol characteristics of the mannitol-TPP-dendriplex 

particles formulated in pMDIs and DPIs were assessed using an Anderson Cascade 

Impactor (ACI). This study demonstrates the successful use of TPP-targeted PAMAM 

dendrimers as vectors for siRNA delivery for a model of the pulmonary epithelium, and 
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their formulations using pMDIs and DPIs for direct and noninvasive siRNA delivery to the 

lungs. 

4.2 Materials and Methods 

4.2.1 Materials 

Generation four, amine-terminated, poly(amidoamine) (PAMAM) dendrimer 

(G4NH2) in methanol at 9.8% w/w was purchased from Dendritech Inc. (Midland, MI).  

Double-stranded Dicer substrate siRNA targeting eGFP ((+) siRNA) and double stranded 

respective mismatch as a negative control ((-) siRNA) was obtained from Integrated DNA 

Technologies (Leuven, Belgium).96 Dimethyl sulfoxide (DMSO) anhydrous (Acros), N-

Hydroxysuccinimide (NHS) (Acros), agarose, sodium chloride (NaCl), potassium chloride 

(KCl), potassium phosphate, monobasic, anhydrous (KH2PO4), potassium hydroxide 

(KOH) agarose, and (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) were 

purchased from Thermo Fischer Scientific (Rockford, IL). Sodium phosphate, dibasic, 

anhydrous (Na2HPO4) was purchased from EMD Chemicals, Inc. (Gibbston, NJ). (3-

Carboxypropyl) triphenylphosphonium bromide (TPP), P-toluenesolfonic acid (p-TSA), D-

Mannitol (98%), and heparin sodium salt (194 U/mg) were purchased from Sigma Aldrich 

(St. Louis, MO). N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) was purchased 

from Advanced ChemTech Inc. (Louisville, KY). Diethylpyrocarbonate (DEPC) and 

ethylenediaminetetraacetic acid (EDTA) (pH 8, 0.5 M, sterile) were acquired from 

Amresco (Solon, OH, United States). Dymel 227 ea/P hydrofluoroalkane (HFA227) 

propellant was a gift from DuPoint (Fort Worth, Texas, United States). Spectra/Por 

cellulose ester membrane dialysis tubing was purchased from Spectrum Laboratories, 

Inc. (Rancho Dominguez, CA).  Deuterium Oxide (D2O) were purchased from Cambridge 
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Isotope Laboratories (Tewksbury, MA). Hank’s Balanced Salt Solution (1xHBSS) 

supplemented with 0.01 M HEPES was prepared according to the recipe provided by 

Irvine Scientific (Santa Anna, CA).  Deionized (DI) water was obtained from NANOpure® 

Diamond UV ultrapure water system (Barnstead International - Lake Balboa, CA).  

Amicon Centrifugal Filters were purchased from EMD Millipore (Billerica, MA).  Trypsin-

EDTA (1x) (Corning®), and 24-well and 96-well cell culture plates (Corning®) were 

purchased from VWR International. SeaKem LE Agarose was purchased from Lonza 

Group Ltd (Rockland, ME, United States).  Ethidium bromide (98%, 10 mg/mL) was 

supplied by IBI Scientific (Peosta, IA, United States).  

4.2.2 Conjugation of TPP to G4NH2 Dendrimer to Form G4NH2-TPP Conjugates 

G4NH2 PAMAM dendrimer (95.08 mg) was dissolved in 9.5 mL of DMSO with the 

addition of p-TSA (25.97 mg) and left to stir at room temperature for 24 h. TPP was 

activated using EDC/NHS coupling reaction adding 2:1 molar ratio of both EDC and NHS 

to TPP dissolved in anhydrous DMSO and allowed to stir at room temperature overnight 

to obtain activated TPP.  G4NH2/p-TSA mixture was added to the activated TPP dissolved 

in DMSO and the reaction mixture was allowed to proceed at room temperature for 3 

days. The molar ratios of activated TPP to G4NH2 were varied to conjugate different TPP 

densities to G4NH2 to form G4NH2-TPP conjugates in separate reactions. The reaction 

mixtures were then dialyzed against distilled water followed by Phosphate Buffered Saline 

(1xPBS – pH 7.2) solution using a using a Spectra/Por dialysis membrane. The products 

were further purified using an Amicon Ultra 15 centrifugal filter against a 10xPBS solution 

(pH 7.2) and again against distilled water. The G4NH2-TPP conjugates were frozen and 
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lyophilized to remove water, then characterized by 1H-NMR in D2O (Varian Mercury, 400 

mHz).  

4.2.3 Preparation and Characterization of TPP-Dendriplexes 

G4NH2-TPP-dendriplexes (or simply TPP-dendriplexes) were formed by a 

dropwise addition of GNH2-TPP conjugates (10-4,100 µg/mL, 20 nM Tris-HCl pH 7.4) to 

siRNA (17 pmol-80 pmol, RNase-free distilled water) and vortexed for 1 min. The TPP-

dendriplexes were incubated for 30 minutes at room temperature to ensure complete 

complexation. The concentrations of G4NH2-TPP conjugates were varied in order to 

obtain the desired N/P ratio – the molar ratio between the remaining unconjugated 

primary amine groups (N) of G4NH2-TPP conjugates and phosphate groups (P) on the 

siRNA sugar backbone.  

The size (hydrodynamic diameter, HD) and zeta potential (ζ) were evaluated for 

each TPP-dendriplex at various N/P ratios using Light Scattering (LS, Malvern ZetaSizer 

Nano ZS). HD was based on the intensity measurement provided by LS. Each sample 

contained 80 nM of siRNA and was performed at 25°C diluted in buffer for size, and in 

DI-water for ζ utilizing the refractive index, viscosity, and dielectric constant of DI water. 

A minimum of three independent measurements were taken for each sample to obtain an 

average size and ζ. A representative scanning electron microscopy (SEM) image was 

taken of the 12TPP-dendriplex, and geometric size based on ~340 particles was 

evaluated (Zeiss EVO 50 XVP SEM). TPP-dendriplexes were prepared as described 

earlier, with minor change that both the TPP-dendrimer and siRNA were dissolved in DI 

water. The final concentration of TPP-dendriplexes contained 80 nM of siRNA.  
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4.2.4 RNA Gel Complexation Assay 

The complexation efficiency of G4NH2-TPP conjugates to form TPP-dendriplexes 

was analyzed by gel electrophoresis. Various TPP-dendriplexes were formed as 

described previously using the equivalent of 300 ng of siRNA (RNase free DI-water) and 

G4NH2-TPP conjugates containing an average of 0, 4, 8 and 12 TPP (20mM Tris-HCl 

buffer at pH of 7.4) at N/P ratios of 0, 0.2, 0.8, 1, 2, 3, 5, 10, 20, and 30. Each TPP-

dendriplex sample was run in a 1.5% w/v agarose gel (1.5% w/v in tris base, acetic acid, 

and EDTA (TAE) 1X pH 8) at 90 V (E0160-VWR Mini Gel Electrophoresis) for 30 min. 

The migration of non-complexed siRNA was visualized under UV irradiation and images 

were obtained (Gel DocTM EZ, Bio-Rad). 

4.2.5 siRNA Release via Polyanion Competition Assay 

The release of siRNA from TPP-dendriplexes due to the addition of competing 

polyanionic heparin was determined as a measure of complex stability.266  Briefly, TPP-

dendriplexes with an N/P ratio of 30 were formed (200 ng siRNA) and incubated at room 

temperature for 30 min. The dendriplexes were then incubated with increasing 

concentrations of heparin (0, 5, 10, 15, 20, 25, 30, 35 µg/µg, heparin/siRNA) under 5% 

CO2 at 37°C for 1 hour. The samples were loaded onto a casted non-denaturing agarose 

gel and subjected to electrophoresis as stated previously. Non-complexed siRNA was 

loaded as a reference in each gel. The gels were subsequently imaged under UV 

irradiation and images were recorded using the Gel DocTM EZ (Bio-Rad). The binding for 

each G4NH2-TPP conjugate was performed at least in 2 independent experiments. 
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4.2.6 In Vitro Gene Knockdown 

The knockdown efficiency of the various TPP-dendriplexes were analyzed in vitro 

against A549 cells stably expressing GFP – eGFP-A59 cells. The development of eGFP 

A549 was described previously.96 TPP-dendriplexes containing a scramble (-) siRNA 

sequence were used as a negative control to account for any off-target effects.  These 

were also compared to non-complexed siRNA ((-) and (+) sequences) and to the 

commercial reagent Lipofectamine® 2000 (Life Technologies), the positive control. 

Briefly, eGFP-A549 cells were cultured in Dulbecco's Modified Eagle Medium 1 x high 

glucose (DMEM, Life Technologies) supplemented with 10% (v/v) fetal bovine serum 

(FBS, Atlanta Biologicals) and 2.5 µg/mL of puromycin selective antibiotic (Toku-E 

Biotechnology), and non-eGFP expressing A549 cells (AATC) were cultured in DMEM 

supplemented with 10% FBS and 1% Penicillin Streptomycin (100 U/mL Penicillin and 

100 µg/mL Streptomycin) antibiotics (AB, Life Technologies). Both were cultured at 37°C 

with 5% CO2 and used once culture reached 90% confluency. 50,000 cells per well (2 

wells with A549, 22 wells with eGFP-A549 cells) were seeded in 24 well plate and 

incubated for 24 hours at 37°C and 5% CO2. The cells were then washed with 1xPBS and 

250 µL of transfection solution (dendriplexes of +siRNA (n=3) and –siRNA (n=3) dissolved 

in 250µl of DMEM + 10%FBS + 1%AB) was added to each well and allowed to incubate 

for 6 hours, followed by the replacement of 500 µL of fresh culture medium. The TPP-

dendriplexes were made as discussed earlier. Each TPP-dendriplex contained 20 pmol 

of siRNA.  An appropriate amount of TPP-dendrimer (1.2-11.5 µg) was added to culture 

medium to a final volume of 250 µL. The 12TPP-dendriplexes were encapsulated into 

mannitol to form microparticles were also tested with same amount of siRNA (20 pmol) – 
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to assess the impact of the particle formation strategy on the biological activity of the 

siRNA. Some transfection solutions contained no TPP-dendriplexes for controls. The cells 

were then allowed to incubate at 37°C and 5% CO2 for 48 hours. The cells were then 

removed from the 24 well plate and resuspended in Attune® Focusing Fluid (1X). The 

median fluorescent intensity (MFI) from the GFP was measured using flow cytometry 

(AttuneTM Flow Cytometer, Thermo Fisher Scientific). MFI of non-eGFP A549 cells used 

as a negative control to take away any artifacts of fluorescence not produced by GFP and 

the average MFI from the negative control was subtracted from MFI of all the other 

samples – MFISample. eGFP A549 cells alone were used as a positive control – MFI+control. 

Data was analyzed using Attune® Cytometric Software v2.1. Percent (%) eGFP 

knockdown was calculated as follows in Equation (4.1):  

 

% 𝑒𝐺𝐹𝑃 𝐾𝑛𝑜𝑐𝑘𝑑𝑜𝑤𝑛 =  (
𝑀𝐹𝐼+ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙− 𝑀𝐹𝐼𝑠𝑎𝑚𝑝𝑙𝑒

𝑀𝐹𝐼+ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 
) × 100%   (4.1) 

 

4.2.7 In Vitro Cytotoxicity  

A549 cells were seeded using a 96 well plate at a density of 5 x 103 cells per well. 

The cells were allowed to grow in DMEM + 10% FBS + 1% AB (v/v) for 24 hours at 37°C 

and 5% CO2. TPP-dendriplexes (0.2 mL) were formed as previously stated at N/P ratio of 

30 and at the same concentrations utilized for in vitro gene knockdown experiment. Also, 

12TPP-dendriplex at N/P 30 was further analyzed by increasing siRNA concentration (0-

0.4 µM) and 12TPP-dendriplex concentration (0-12 µM) in DMEM + 10% FBS +1% AB. 

These TPP-dendriplexes were incubated with the cells for an additional 48 hours under 

5% CO2 at 37°C in DMEM + 10% FBS +1% AB.  Wells with no TPP-dendriplexes were 
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used as the control. Cell viability was analyzed using CellTiter 96® Aqueous Non-

Radioactive Cell Proliferation Assay (Promega). Briefly, the cells were rinsed twice with 

1xHBSS and 120 µL of MTS/PMS solution made in DMEM medium was added to each 

well and incubated for an additional 4 hours at 37°C and 5% CO2.  The absorbance was 

read at 490 nm using ELISA plate reader (Multiskan™ GO Microplate Spectrophotometer, 

Thermo Fisher Scientific). Cell viability was calculated using Equation 4.2 (n=5). 

 

% 𝐶𝑒𝑙𝑙 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑒𝑙𝑙𝑠
𝑥100%, (4.2) 

 

4.2.8 Preparation and Characterization of 12TPP-Dendriplex/Mannitol 

Microparticles  

The 12TPP-dendriplex (N/P=30) was prepared as described earlier.  A known 

volume (600 µL) of the 12TPP-dendriplex solution (30 µg siRNA equiv.) was mixed up 

with 2.4 mL RNase-free DI H2O with D-mannitol (90 mg equivalent).  The mixture was 

immediately spray-dried using Mini Spray Dryer B-290 (BUCHI) with the following setup: 

inlet temperature = 45°C, outlet temperature = 31-36°C, atomizing nitrogen flow rate 40 

mm (473 L/h), pump ratio 5% (1.5 mL/min), aspiration rate 70% (approximately 35 m3/L 

= 100%), and nozzle cleaning 0.  The 12TPP-dendriplex/mannitol microparticles were 

collected at the end of the gas cyclone.  The collected microparticles were lyophilized 

overnight to remove any residual H2O and were then placed in desiccator for future use. 

 The yield of the spray drying was calculated by Equation 4.3:  

 

𝑌𝑖𝑒𝑙𝑑 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑚𝑖𝑐𝑟𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑚𝑔)

(90+0.03) (𝑚𝑔)
 (n=3) (4.3) 
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The payload of siRNA in 12TPP-dendriplex/mannitol microparticle was determined by 

incubating a certain amount of microparticles with 0.1 mL heparin aqueous solution (450 

U) for 0.5 h followed by analysis with agarose gel electrophoresis and densitometry (n=3).  

The geometric diameter of spray-dried 12TPP-dendriplex/mannitol particle was 

measured with scanning electron microscopy (SEM).  The microparticles were sprayed 

onto copper tape and then were sputtered with gold for 30 s.  The SEM was performed 

at 5 kV.  To measure the solvated diameter (SD) of the 12TPP-dendriplex/mannitol 

microparticles, a dispersion of the mircroparticles was prepared in 2H,3H-

perfluoropentane (HPFP) and measured by light scattering using Nano ZS Zetasizer 

(Malvern Instruments, United Kingdom), (n ≥ 3). To measure the hydrodynamic diameter 

(HD) and zeta potential (ζ) of “reconstituted 12TPP-dendriplex”, 12TPP-

dendriplex/mannitol microparticles were redissolved in RNase-free DI H2O (1 mg/mL) and 

then sonicated for 30 s at room temperature.  HD and ζ were determined immediately 

with Nano ZS Zetasizer (Malvern Instruments, United Kingdom), (n ≥ 3).  

4.2.9 Preparation and in vitro Aerosolization of the pMDI Formulation of 12TPP-

Dendriplex/Mannitol Microparticles 

The 12-TPPdendriplex/mannitol microparticles formulated as described earlier 

were weighed in pressure-proof glass vial (West Pharmaceutical Services) and manually 

crimped with 63 µL metering valves (Bespak). HFA227 was filled with a glass vial using 

a manual syringe pump (HiP, 50-6-15) and home-built high-pressure filler to make a final 

particle concentration of 2 mg/mL. The glass vial was placed in VWR PC250 sonicator 

bath at 5-10°C (VWR International) for 20 min.  The stability of the formulation was 
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performed by visually monitoring the dispersion of the microparticles in propellant as a 

function of time. 

An Andersen Cascade Impactor (Copley Scientific) with a USP induction port (IP) 

and eight stages was used to test the in vitro aerosol characteristics of the prepared pMDI 

formulation.  The in vitro aerosol performance was assayed at a flow rate of 28.3 L/min, 

25°C and 75% relative humidity.  First several shots were fired to waste and then 40 

actuations were puffed into the ACI with 10 s intervals between every two shots.  The ACI 

was disassembled soon after the last shot.  The actuator, IP, and the plates on each of 

the 8 stages were rinsed carefully with 10 mL RNase-free DI H2O and stored in separated 

centrifuge tubes.  These 12TPP-dendriplex/mannitol microparticles were frozen and then 

lyophilized.  The particles in each tube were carefully weighed for further analysis.  The 

microparticles collected from each tube were redissolved in 100 µL heparin-containing 

TE buffer (heparin 455 U/mL, pH 8.0, 1X) and the incubation was performed for 30 min 

at 37°C.  10 µL of the above buffer solution was loaded into an agarose gel.  The gel 

electrophoresis was performed at 60V for 40 min.  The amount of siRNA was quantified 

with densitometry using ImageJ 1.42q (National Institutes of Health). Respirable fraction 

(RF, Equation 4), fine particle fraction (FPF, Equation 5), mass median aerodynamic 

diameter (MMAD), and geometric standard deviation (GSD) were calculated with two 

methods: mass method and densitometry method.  In the mass method, the net weight 

of microparticles deposited on each stage was used to determine RF and FPF from 

Equations 4 and 5.  In the densitometry method, the mass of siRNA was assessed from 

densitometry and used in Equations 4.4 and 4.5.  
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𝑅𝐹 =
𝑀𝑎𝑠𝑠 𝑓𝑟𝑜𝑚  𝑆𝑡𝑎𝑔𝑒 0 𝑡𝑜 𝐹𝑖𝑙𝑡𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑠𝑠 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑡𝑜 𝐴𝐶𝐼
     (4.4) 

 

𝐹𝑃𝐹 =
𝑀𝑎𝑠𝑠 𝑓𝑟𝑜𝑚 𝑆𝑡𝑎𝑔𝑒 3 𝑡𝑜 𝐹𝑖𝑙𝑡𝑒𝑟

𝑀𝑎𝑠𝑠 𝑓𝑟𝑜𝑚 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑟𝑡 𝑡𝑜 𝐹𝑖𝑙𝑡𝑒𝑟
  (Aerodynamic diameter ≤4.7 µm) (4.5) 

 

MMAD and GSD were calculated as described previously.267 

4.2.10 Preparation and in vitro Aerosolization of the DPI Formulation of 12TPP-

Dendriplex/Mannitol Microparticles 

The aerosolization of the DPI formulations was also determined with an 8-stage 

Andersen Cascade Impactor (Copley Scientific Limited) to which a pre-separator (Copley 

Scientific Limited) was attached to prevent large particles or aggregates from reaching 

the stages. A dose of 12TPP-dendriplex/mannitol microparticles (10-20 mg) was loaded 

into a capsule and inserted into Rotahaler® device (Cipla Limited), and then dispersed at 

an inspiration rate of 28.3 L/min for 4 s.  The plates from each stage were carefully rinsed 

with 20 mL RNase-free H2O.  The collected aqueous solution was frozen and then 

lyophilized for 72 hours.  The lyophilized particles from the inhaler device, induction port, 

and 8 plates were individually dissolved in 100 µL heparin TE 1X solution (455 U/mL) for 

0.5 h and the siRNA amount was quantified by agarose gel electrophoresis and 

densitometry.  Emitted dose (ED) was considered as the difference between the initial 

mass and the mass of microparticles left in the inhaler or capsule after the inspiration 

process.  The RF, FPF, MMAD and GSD were calculated as previously noted. 

4.2.11 Statistical Analysis   

All data are presented as a mean ± standard deviation.  The means were calculated 

from a minimum of three independent trials for each measurement (n ≥ 3).  One-way 
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analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test or an 

unpaired t-test was performed using GraphPad Prism 5 software.  Means were 

considered statistically significant if p < 0.05. 

4.3 Results 

4.3.1 Conjugation of TPP to G4NH2 Dendrimer. 

TPP was conjugated to the primary amines of G4NH2 (Scheme 4.1).  
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Scheme 4.1. Schematic of the TPP conjugation to the amine-terminated, generation 
4 poly(amido)amine (PAMAM) dendrimer (G4NH2). A) TPP is activated using 
EDC/NHS coupling to form TPP-NHS in DMSO. B) G4NH2 was then later added to 
the activated TPP (TPP-NHS) in DMSO and allowed to react to form G4NH2-TPP 
dendrimer conjugate. The amount of TPP-NHS added to the reaction mixture 
determined the conjugation density with the final density of TPP per dendrimer of ~ 0, 
4, 8, 12 TPP.  
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The conjugation of TPP to G4NH2 to form G4NH2-TPP was confirmed by 1H NMR D2O 

(Figure 4.1).  

G4NH2 with increasing density of TPP were prepared to assess the effect of TPP on the 

gene knockdown efficiency of the dendriplexes. The results indicate that an average of 4, 

8, and 12 TPP molecules were conjugated per dendrimer. 

4.3.2 Preparation and Characterization of TPP-Dendriplexes 

TPP-dendriplexes were prepared by combining positively-charged G4NH2-TPP 

conjugates with negatively-charged siRNA. The TPP-dendriplexes were named based on 

the TPP conjugation density to G4NH2: 0TPP-dendriplex, 4TPP-dendriplex, 8TPP-

dendriplex, and 12TPP-dendriplex. They were characterized for their size (HD), and 

surface charge (ζ) via LS (Table 4.1). 

Figure 4.1. 1H NMR characterization of G4NH2-TPP conjugates in D2O.  The 
chemical structure is shown above with the corresponding peak shifts labeled within 
the spectrum.  
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Table 4.1. Characterization of G4NH2-siRNA complexes by Light Scattering.  
Hydrodynamic diameters (HD), Polydispersity Index (PDI), and zeta potential (ζ) are 
summarized as a function of number density of TPP per G4NH2 (0-12) and also as a 
function of N/P ratio (5-30). HD was based on intensity measurements. HD = mean ± s.d., 
PDI = mean ± s.d., ζ = mean ± s.d.  

 0 TPP 4 TPP 8 TPP 12 TPP 

N/P 

ratio 

HD 

(nm) 

PDI ζ 

(mV) 

HD 

(nm) 

PDI ζ 

(mV) 

HD 

(nm) 

PDI ζ 

(mV) 

HD 

(nm) 

PDI ζ 

(mV) 

5 172 

± 26 

0.44 

± 

0.04 

37± 

7 

304 

± 75 

0.47 

± 

0.08 

16 ± 

5 

372 

± 29 

0.52 

± 

0.04 

43 ± 

8 

310 

± 12 

0.30 

± 

0.08 

22 ± 

2 

10 129 

± 3 

0.31 

± 

0.02 

33 ± 

3 

367 

± 

120 

0.50 

± 

0.15 

12 ± 

7 

323 

± 20 

0.47 

± 

0.06 

25 ± 

8 

218 

± 42 

0.36 

± 

0.07 

33 ± 

5 

20 343 

± 20 

0.38 

± 

0.08 

33 ± 

3 

327 

± 34 

0.45 

± 

0.07 

42 ± 

10 

379 

± 26 

0.56 

± 

0.09 

31 ± 

10 

382 

± 37 

0.56 

± 

0.06 

23 ± 

7 

30 339 

± 21 

0.39 

± 

0.11 

34 ± 

7 

364 

± 32 

0.49 

± 

0.03 

17 ± 

3 

361 

± 20 

0.49 

± 

0.05 

27 ± 

5 

363 

± 55 

0.36 

± 

0.15 

40 ± 

3 

 

The average density of TPP (0, 4, 8, 12 TPP molecules per G4NH2 dendrimer) and 

N/P ratio (5, 10, 20, 30) were varied for each TPP-dendriplex. All TPP-dendriplexes were 

able to form nanoparticles with sizes ranging from 120 nm – 400 nm in diameter, most 

being in the 300 nm range (Table 4.1). The PDI ranged from 0.2-0.5, therefore 

demonstrating that stable complexes of similar sized could be formed. These PDI values 

are less than 0.7, which indicates that the sizes have some spread in their distribution but 

are still producing relatively similar sizes.  The N/P ratio and TPP density do not seem to 

greatly impact the HD of the TPP-dendriplex. The ζ of all TPP-dendriplexes were 

positively charged, ranging from +12-43 mV. No obvious trend in surface charge with TPP 
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density of the TPP-dendriplexes was seen either. SEM image (Figure 4.2) of 12TPP-

dendriplexes (N/P 30) revealed spherical nanoparticles with an average geometric 

diameter of 160 ± 50 nm. 

 

4.3.3 RNA Gel Complexation Assay 

The complexation ability of the TPP-dendriplexes was tested using a complexation 

assay. TPP-dendriplexes were added to a constant amount of siRNA (300 ng) and 

increasing the N/P ratio (amount of dendriplex compared to siRNA) for TPP-dendriplexes 

with different average densities of TPP (Figure 4.3).  

The non-complexed siRNA band can be seen in the first lane at N/P = 0.0. As the 

N/P ratio increased, the amount of non-complexed siRNA decreased.  The N/P ratios 

where no non-complexed siRNA band can be seen demonstrates full complexation with 

G4NH2-TPP to form TPP-dendriplex with the amount of siRNA present. For TPP-

dendriplex with 0 and 4 TPP groups on average, an N/P ratio of 1 was enough to ensure 

full complexation. The conjugation of TPP above the average of 4TPP on the dendrimer 

required an increase in N/P ratio from 1 to 2 to fully complex all the siRNA. For all groups, 

an N/P ratio of 2 was able to fully complex all siRNA present, which is seen as an absence 

of non-complexed siRNA band in the agarose gel (Figure 4.3).  

Figure 4.2. Scanning electron microscopy (SEM) of 12TPP-dendriplex at N/P 30. The 
geometric diameter represents ~ 340 particles.  
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4.3.4 siRNA Release via Polyanion Competition  

A measure of complex stability was assessed using heparin as a polyanion 

competitor (Figure 4.4). 

Figure 4.3. The siRNA complexation efficiency as a function of N/P ratio as visualized 
by gel electrophoresis.  The dendriplexes were prepared with various ratios of TPP (as 
indicated to the left).  The first lane contains untreated non-complexed siRNA as control 
and subsequent lanes with increasing N/P ratios as shown.  
 



www.manaraa.com

101 
 

 
 

 

Heparin, a highly negatively charged anion, can act as a competitor for 

complexation relative to nucleic acids and, therefore, be used as a way to measure 

complex stability. The comparison was made between the dendriplex group containing 

no TPP (0TPP-dendriplex, N/P 30) and that with most TPP (12-TPP dendriplex, N/P 30). 

The success of decomplexation was demonstrated by the non-complexed siRNA band in 

the agarose gel. The results demonstrated less heparin was needed to fully decomplex 

the siRNA from the TPP-dendrimer for the 12-TPP dendriplex (Figure 4.4). Almost full 

decomplexation at 20 heparin (µg)/siRNA (µg) is achieved for 12TPP-dendriplex.  

However, for the complex formed with the dendrimer without TPP, most of the siRNA is 

still complexed until 30 heparin (µg)/siRNA (µg). Therefore, a reduction in complex 

stability can be observed upon the conjugation of TPP to the surface of the dendrimer.  

 

 

Figure 4.4. Polyanion competition assay visualized by gel electrophoresis. The 
stability of the dendriplexes was tested for 0TPP-dendriplex (N/P 30) and 12TPP-
dendriplex (N/P 30) by exposing each to increasing amounts of heparin. C = siRNA 
only, used as a control. 
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4.3.5 In Vitro Gene Knockdown 

The gene knockdown ability of the TPP-dendriplexes was tested in vitro by the 

delivery of siRNA targeting eGFP gene in eGFP-expressing A549 cells. The results 

(Figure 4.5) are expressed as the percent of eGFP knockdown (% eGFP knockdown). 

 

Figure 4.5. In vitro gene knockdown of eGFP expression in stably expressing eGFP 
A549 cells. The dendriplexes (Dplex) were prepared at N/P ratio of 30 with eGFP 
siRNA and G4NH2-TPP conjugates.  The specificity of the knockdown was performed 
by comparing dendriplexes with a scramble eGFP sequence (-siRNA) to the correct 
corresponding eGFP sequence (+siRNA). Non-complexed siRNA (siRNA) was used 
as a negative control and the commercial reagent Lipofectamine 2000 (L) was used 
as a positive control. 20 pmol of siRNA (80 nM) was used for each sample while the 
amount of dendrimer-TPP ranged from 1.2-11.5 µg (0.3-2.4 µM) depending on the 
desired N/P ratio and TPP density of TPP-dendrimer sample.  * represents a statistical 
difference (p < 0.05) between the non-complexed +siRNA and various +siRNA groups, 
while ρ represents a statistical difference of +siRNA between indicated groups as 
analyzed by One-Way ANOVA followed by Tukey’s Multiple Comparison Test (n ≥ 3) 
(p < 0.05), n.s.d. = not statistically different. 
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A scramble sequence ((-) siRNA) was used as a negative control to account for 

off-target effects and compared with the eGFP sequence ((+) siRNA). Also, the effect of 

N/P ratios and varying TPP densities were compared to naked siRNA delivery and with 

the commercial siRNA delivery vehicle Lipofectamine® 2000. All N/P ratios were chosen 

above where full complexation is known to occur between the siRNA and the TPP-

dendrimers, as demonstrated by the complexation assay. 

There was no significant difference seen between the (-) siRNA and (+) siRNA 

sequences for 0TPP-dendriplex at N/P 10, and 4TPP-dendriplex at N/P of 20, and naked 

(-) siRNA and (+) siRNA sequences, which may indicate that any gene knockdown seen 

may only be due to off-target effects and not due to the successful siRNA delivery and 

gene knockdown. All other groups when comparing the (-) siRNA and (+) siRNA TPP-

dendriplexes and various controls, a statistically significant difference was observed, 

which demonstrates that eGFP knockdown was above and beyond any off-target effects. 

All groups at all the N/P ratios demonstrated a significant increase in eGFP knockdown 

when compared to delivering (+) siRNA alone to the cells. At N/P 5, all TPP-dendriplexes 

were able to knockdown the eGFP gene but showed no statistical difference between any 

group and showed only moderate knockdown compared to Lipofectamine® 2000. As the 

N/P ratio increased (N/P 10, 20, & 30), changes in gene knockdown efficiency between 

the various TPP-dendriplexes was observed.  In general, an increase in TPP density and 

increase in N/P ratio lead to an increase in gene knockdown efficiency. 

The most effective TPP-dendriplex system was found to be 12TPP-dendriplex at 

N/P ratio of 30 with % eGFP knockdown at 45 ± 5 %. This group was used to formulate 

mannitol microparticles suitable for pulmonary delivery.  After formulation in mannitol, 
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gene knockdown efficiency of the recovered dendriplexes was unchanged to 49 ± 11% - 

Figure 4.5 – N/P30 12TPP-SD. The results can be directly contrasted with the positive 

control, Lipofectamine® 2000, which showed a gene knockdown ability at 73 ± 2%.  

4.3.6 In Vitro Cytotoxicity 

The toxicity of the TPP-dendriplex nanocarrier was also tested in vitro against 

A549 cells at the same incubation period (48 hours) and concentrations utilized in the in 

vitro gene knockdown experiments, using TPP-dendriplexes formulated at N/P 30 – the 

N/P ratio that resulted in highest gene knockdown efficiency. The results reveal no 

significant difference in toxicity between the TPP-dendriplexes and that of the control (no 

dendriplex), demonstrating no cell toxicity at the concentrations tested (Figure 4.6).  
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Figure 4.6. Viability of eGFP A549 cells contacted with G4NH2-TPP-siRNA 
dendriplexes (12TPP-dendriplexes) formed at N/P 30, as measured with an MTS 
assay after a 48-hour incubation with the dendriplex.  The concentration of the 
dendriplex used was the same as the in vitro knockdown experiments.  Statistical 
analysis was run between the control group (no dendriplex) representing 100 % cell 
viability, and the dendriplex formed with G4NH2 with varying TPP density.  One-Way 
ANOVA followed by Tukey’s Multiple Comparison Test (n ≤ 3).  n.s.d. = not statistically 
different. 
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The toxicity of 12TPP-dendriplex was also tested at the same incubation period of 

48 hours and increasing concentrations of 12TPP dendriplex but maintaining the N/P 30 

ratio - the system (N/P ratio and TPP density) with highest gene knockdown efficiency 

(Figure 4.7). 

 

The highest concentration for which no cell toxicity was seen for 12TPP-dendriplex 

at N/P 30 was 0.08 µM siRNA / 2.4 µM 12TPP-dendrimer, while 0.16 µM siRNA / 4.8 µM 

12TPP-dendrimer led to a statistically significant decrease in % cell viability (73 ± 3%). 

The concentration used for in vitro gene knockdown experiments was 0.1 µM siRNA / 3.0 

µM 12TPP-dendrimer. This was also considered a concentration that did not affect cell 

viability (Figure 4.6) and correlates with these findings (Figure 4.7). 
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Figure 4.7. The cell viability of eGFP A549 cells contacted with G4NH2-12TPP 
dendriplex (12TPP-dendriplex) formed at N/P 30 as measured by the MTS assay after 
48 h incubation and increasing dendriplex concentration. * represents the statistical 
analysis between the control group indicated at 0 µM representing 100 % cell viability 
and those of increasing concentrations, as analyzed by One-Way ANOVA followed by 
Tukey’s Multiple Comparison Test (n ≤ 3).  n.s.d. = not statistically different. 
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4.3.7 Preparation and Characterization of 12TPP-Dendriplex/Mannitol 

Microparticles  

The system that displayed the highest in vitro gene knockdown ability (12TPP-

dendriplex at N/P 30) was selected for formulation into inhalable microparticles using 

mannitol as the excipient. The 12TPP-dendriplex/mannitol microparticles were formed 

using the spray drying technique and characterized by LS, SEM, and gel electrophoresis. 

The percent yield of the powders prepared by spray drying was 76 ± 5%. The 

nanocomplexes were loaded with high efficiency into the microparticles - 75.1 ± 6.7% 

relative to theoretical payload.  The payload of siRNA within the TPP-dendriplex-mannitol 

microparticles was determined by densitometry - 0.025 ± 0.004% (wt/wt, n=3).  

The microparticles were visualized using SEM (Figure 4.8) revealing a smooth and 

spherical shape. 

  

 
 

Figure 4.8. Scanning electron microscopy (SEM) of dendriplex/mannitol microparticles 
prepared by spray drying.  The geometric diameter of dendriplex/mannitol particle 
(inset) represents the average of over 300 particles.  Higher magnification image is 
shown as inset. 
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The geometric diameters of microparticles was also qualitatively assessed by SEM and 

compared to the solvated diameter (SD) utilizing LS where the 12TPP-

dendriplex/mannitol microparticles were dispersed in HPFP, a model propellant.  The 

results revealed a geometrical diameter of 2.4 ± 0.9 µm and a SD of 4.2 ± 0.5 µm. The 

redispersability of the dendriplexes encapsulated within the microparticles upon 

breakdown in aqueous media is an important factor for lung deposition and intracellular 

internalization of siRNA. LS results (Table 4.2) revealed that the HD of the 12TPP-

dendriplex reconstituted from the microparticles (340 ± 154.5 nm) was similar as that of 

freshly prepared dendriplex (363 ± 55 nm) indicating the 12TPP-dendriplex structure 

remained intact during the spray drying process.  

Table 4.2. Hydrodynamic diameters (HD), Polydispersity Index (PDI), and zeta potential 
(ζ) of 12TPP-dendriplex (N/P 30) before formulation in mannitol-based microparticles and 
after reconstitution in DI H2O.  Light Scattering performed in DI water. 

 HD (nm) PDI ζ (mV) 

Dendriplex 363 ± 55 0.36 ± 0.15 +40 ± 3 

+27 ± 7 Reconstituted dendriplex  340 ± 150 0.20 ± 0.02 

 
The surface charge of the 12TPP-dendriplex remained positive in both cases, 

however, did decrease from +40 mV to +26.5 mV – note that the media in which they 

were measured is slightly different, as the reconstituted dendriplexes were measured in 

the presence of mannitol. 

4.3.8 The in vitro Aerosolization of 12TPP-Dendriplex/mannitol Microparticles 

Formulated as Dispersions in HFA-based pMDIs 

The 12TPP-dendriplex/mannitol microparticles were tested for their aerosol 

performance utilizing an in vitro lung model, the Anderson Cascade Impactor (ACI), for 

the pMDI formulations. The ACI comprises eight different stages representing different 

areas of lung deposition, and the amount of deposition was determined either by 
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quantifying the siRNA levels (densitometry) or the siRNA and the total mass of 

microparticles (siRNA + mannitol) in each plate (Figure 4.9). The aerosol characteristics 

of the pMDI formulations, including respirable fraction (RF), fine particle fraction (FPF), 

mean mass aerodynamic diameter (MMAD), and geometric standard deviation (GSD) 

were determined (Table B1). The % deposition of the siRNA/microparticles on the various 

stages of the ACI have indicated that besides the IP and AC, highest deposition of siRNA 

(on respirable stages) was on stages 3, 4 (Figure 4.9).   

 

The FPF calculated for the pMDI formulations by mass method was 50.3 ± 2.6% 

and by the siRNA densitometry was 53.7 ± 3.0%, demonstrating good correlation 

between the two methods. MMAD was determined to be 3.8 ± 0.2 µm (mass method) and 

 Figure 4.9. Deposition of 12TPP-dendriplex/mannitol microparticles on different 

stages of the Andersen Cascade Impactor (ACI) from a pMDI formulation at a flow rate 
of 28.3 L/min, as determined by siRNA densitometry method and particle mass 

method.  pMDI formulations at 2 mg microparticles/1 mL HFA227 propellant at 25C 
and saturation pressure of propellant.  The payload of siRNA in microparticle is 0.025% 
wt/wt.  The results were based on 20 actuations and represented with mean ± s.d. 
(n=3).  Statistical analysis was performed with Student t-test (*p<0.05).  AC: actuator, 
IP: induction port, 0-7: plate 0-7, and F: filter.  
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3.6 ± 0.1 (µm siRNA densitometry method), while the calculated GSD was 1.4 ± 0.1 (mass 

method) and 1.8 ± 0.2 (siRNA densitometry method). 

4.3.9 The in vitro Aerosolization of DPI Formulation of 12TPP-Dendriplex/Mannitol 

Microparticles  

The inhalable 12TPP-dendriplex/mannitol microparticles were also tested as a 

formulation for dry powder inhalers (DPIs). The in vitro deposition of the DPI formulation 

loaded in the RotahalerTM was also assayed at 28.3 L/min and 75% relative humidity using 

8-stage ACI equipped with a preseparator. The deposited particles on each stage were 

collected, and the siRNA was visualized with gel electrophoresis and quantified by 

densitometry (Figure 4.10). 

 

The aerosolization parameters were further calculated based the deposition data 

(Table B2). A relatively large interparticulate cohesion was seen for the 12TPP-
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Figure 4.10. Deposition of 12TPP-dendriplex/mannitol microparticles on the different 
stages of Andersen Cascade Impactor (ACI), as determined by siRNA densitometry 
method.  The 10-20 mg micron particles loaded into capsule were released into ACI 
from Rotahaler® (DPI formulation) at 25°C, 75% relative humidity, and a flow rate of 
28.3 L/min for 4 s inspiration.  The results are represented with mean ± s.d. (n=3).  IH: 
inhaler, IP: induction port, 0-7: plate 0-7, and F: filter.   
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dendriplex/mannitol microparticles, where 49.6 ± 2.4% was retained in the inhaler device 

and capsule.  The particles with low micron size tend to be sticky due to the propensity to 

reduce surface energy upon aggregation.268  In addition, the residual water content in 

mannitol microparticles can exacerbate the stickiness via capillary force.269 ED, RF, and 

FPF were 50.4 ± 2.4%, 41.5 ±2.6%, and 38.5 ± 3.1%, respectively. MMAD and GSD 

based on deposition data were 4.8 ± 0.3 µm and 1.4 ± 0.2, respectively (Table B2). 

4.4 Discussion 

There are many potential advantages in developing effective carrier-based 

systems for siRNA intracellular delivery190, 270 and innovative strategies for local delivery 

of siRNA to the lungs 270, 271 for the treatment of a variety of pulmonary disorders.  The 

literature strongly suggests that synthetic polymers may be employed for enhanced 

siRNA delivery to various tissues.272, 273 PAMAM dendrimers are particularly attractive as 

their surface chemistry can be used not only to provide complexation sites with siRNA, 

and in the process reduce siRNA degradation and enhance cellular uptake,274, 275  but 

can also be modified to control important aspects of siRNA delivery upon cellular 

internalization and potentially be used to target intracellular organelles.261  Motivated by 

recent literature work that demonstrates that linear polymers modified with phosphonium-

containing groups can enhance the delivery of siRNA to the cell cytoplasm,276 and that 

TPP-modified dendrimers are effective carries for pDNA,237 in this work we investigate 

the effect of TPP conjugation on the surface of G4NH2 on their efficacy in delivering siRNA 

to the cell cytosol and to silence genes in an in vitro model of the pulmonary alveolar 

epithelium.  In this context, we were successfully able to formulate G4NH2-TPP-

dendriplexes (or simply TPP-dendriplexes) with various TPP densities and N/P ratios that 
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formed positively-charged nanoparticles (ca. 300 nm). Importantly, we also investigate 

particle engineering strategies that can address the formulation of such siRNA-dendrimer 

complexes in portable inhalers for pulmonary delivery of siRNA. In this case, we 

demonstrated successful micron-particle formulation of TPP-dendriplex systems (12TPP-

dendriplex/mannitol microparticles) for pMDIs and DPIs.  

Firstly, the effect of the TPP density and N/P ratio on the influence of TPP-

dendriplexes ability to successfully deliver siRNA to lung alveolar cells in vitro was 

investigated. Certain characteristics such as complexation ability of TPP-dendrimer to 

siRNA was influenced by increasing presence of TPP on the dendrimer. The amount of 

TPP-dendrimer required to fully complex siRNA increased with the increase in TPP 

density (Figure 4.3) as well as requiring less heparin to separate the siRNA from the 

dendrimer (Figure 4.4) which demonstrates that a looser association between the TPP-

dendrimer and siRNA. While complexes with dendrimer with both TPP and no TPP 

remain positively charged, the TPP-modified dendrimer contained a positive charge that 

is delocalized by the hydrophobic phenyl rings present, thus decreasing the binding ability 

of dendrimers to siRNA. Therefore, this difference in complex stability cannot be attributed 

due to differences in surface charge but are more likely related to the hydrophobic nature 

and steric effects of the phenyl rings present in TPP. Consequently, the loose 

complexation of siRNA with the TPP-dendrimer may provide for a strategy to modulate 

siRNA release, which is a critical step when the nanocarriers reach the cytosol,277 and 

thus overcome an existing challenge in the use of bare cationic PAMAM dendrimers. 

Subsequently, the gene knockdown ability of the TPP-dendriplexes was also 

affected by TPP density and N/P ratio.  An increase in gene knockdown efficiency was 
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observed with an increase in both TPP density and an increase in N/P ratio, as seen by 

the increase in % eGFP knockdown in eGFP-expressing A549 cells (Figure 4.5).  

However, the modification with only 4 TPP molecules per dendrimer did not show any 

increase in transfection ability. Therefore, a threshold of TPP density is required to be 

able enhance transfection ability of dendrimers: >1/16 surface functionalization (greater 

than 4 TPP molecules per 64 available surface groups on G4NH2 PAMAM dendrimer). 

12TPP-dendriplex at N/P of 30 resulted in the highest transfection efficiency (45 ± 5%), 

and was higher than our previous study of unmodified dendriplexes in the same cell line 

(22-37%)96 and what is reported here as a function of N/P ratio (8-25%). 

This increase in transfection ability may be due to several factors. This includes a 

weaker complexation of siRNA with 12TPP dendrimer allowing for facilitated 

decomplexation once the TPP-dendriplex has been internalized into the cell - based on 

evidence seen with the complexation and polyanion competition assays. A balance 

between complexation and decomplexation of the siRNA once internalized into the cell 

must be reached for high gene transfection.278 If the electrostatic interaction is too strong 

between the dendrimer and siRNA, this can lead to a failure in siRNA release and gene 

knockdown,278 which may be a reason for lower transfection ability of 0TPP-dendriplex. 

Other reports have shown that the addition of heparin and other anionic oligomers 

increase the transfection ability of PAMAM/DNA complexes, suggesting that not as strong 

association between the DNA and dendrimer in the presence of heparin could allow for 

higher transfection ability.279, 280 Therefore, the looser association between dendrimer and 

siRNA may account for some increase gene knockdown seen. However, it is also known 

that TPP-modified PAMAM dendrimers can lead to enhanced cellular internalization of 
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dendrimers compared to unmodified dendrimers,33, 261 and this effect depends on TPP 

density.261 This could potentially lead to higher amounts of siRNA being delivered to cells 

over time. Other factors, including increased mitochondrial targeting and efficient 

endolysosomal escape of the dendrimer with TPP may also play important roles in the 

increased transfection ability.237 The transfection ability could also be potentially 

increased if an increase of TPP density on dendrimer were to occur, however, this would 

have to be balanced with potential toxic effect TPP modification can impart, as seen in 

our previous work.261 

The toxicity of TPP-dendriplexes was also monitored to make sure any off-target 

effects were not due to overt toxicity. Off-target effects can include toxicity of the gene 

vector itself 281, 282 and similarities in (-) siRNA mRNA motifs not specifically targeted by 

siRNA.283, 284 These off-target effects are not uncommon, as seen in the use of the 

Lipofectamine® 2000 commercial reagent, and may be difficult to avoid since they are 

not well-understood.285  No significant toxicity of the TPP-dendriplexes (N/P 30) was seen 

for concentrations used in the eGFP knockdown experiment (Figure 4.6), which 

demonstrate the off-target effects seen by delivery of (-) siRNA cannot be attributed to 

toxicity of the TPP-dendrimer. Since the 12TPP-dendriplex at N/P 30 demonstrated the 

highest transfection efficiency, toxicity studies with increasing concentrations of the TPP-

dendriplex was performed to determine the highest concentration of complex that could 

be used without any toxicity seen on the cell model (Figure 4.7). In this case, the 

maximum amount of siRNA that can be delivered to A549 cells in vitro with the TPP-

dendrimer constructs without toxic effects fell between 20-32 pmol of siRNA (0.10-0.16 

µM siRNA/3.0-4.8 µM 12TPP-dendrimer). This contrasts greatly with Lipofectamine® 
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2000 where toxic effects were seen against A549 cells at a concentration of 4 ug/mL, 

which corresponds to 20 pmol of siRNA delivery (Figure B1). This concentration of 

Lipofectamine® 2000 was the concentration utilized in the gene knockdown experiments, 

which may have contributed to some of the off-target effects seen for Lipofectamine® 

2000 as well as demonstrating its limitations in terms of safe siRNA delivery. Therefore, 

the TPP-dendriplex system compared to Lipofectamine® 2000 has the potential to deliver 

more siRNA with less toxic effects.  

From the in vitro knockdown and toxicity studies, the dendriplex with 12TPP and 

at 30 N/P ratios have emerged as the most promising system and was thus selected to 

be tested in the development of the portable oral inhalation formulations for pulmonary 

delivery. There are lots of potential benefits in providing patients with a range of devices 

that they can choose from when dealing with pulmonary drug administration, including 

compliance,286 which is why formulations for both pMDIs and DPIs were developed.  

PAMAM dendrimers have been utilized for pulmonary delivery in vivo77, 78, 116, 287 and 

formulated for use in nebulizers,258  pMDIs96, 127 and DPIs.288 A key aspect of the design 

of oral inhalation formulations is the particle aerodynamic diameter emitted from the 

device, which should fall within the range of 1-5 µm.99, 216  

A strategy to deliver such dendriplexes, whose geometric size are quite different 

from the aerosol requirements for deep lung deposition, is to engineer particles with non-

active ingredients encapsulating the TPP-dendriplexes and having appropriate micron-

sizes. Spray drying provides for an easy and scalable strategy to engineer particles with 

a well-defined size range and morphology.97, 289 Mannitol has been widely used as a 

promising excipient in portable inhalers as early studies demonstrated improvement in 
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respiratory symptom and quality of life of lung dysfunction-stricken patients.290 Spray 

drying has been also recently used to prepare microparticles of mannitol and siRNA-

loaded PLGA nanoparticles for dry powder formulation.265 However, in that study, the 

performance (aerosol characteristics) of the powder formulation was not tested in vitro. 

We also recently investigated the use of spray drying to form microparticles for metered-

dose inhaler formulations of siRNA-dendriplexes.96 Based on the successes of these 

previous studies, we investigated the ability of engineering microparticles of TPP-

dendriplexes and mannitol using spray drying, and the aerosol characteristics of the 

resulting formulations in both pMDI and DPI form. Spray drying 12TPP-dendriplex system 

in mannitol produced desired geometric sizes that are required for within desired size 

ranges.  

We also investigated the characteristics of reconstituted TPP-dendriplexes 

(dendriplexes after spray drying with mannitol and dissolution of mannitol in water) 

compared with TPP-dendriplex before the generation of the microparticles as to maintain 

as close as possible the original characteristics of the dendriplex. The 12TPP-dendriplex 

and reconstructed 12TPP-dendriplex revealed similar nanoparticle sizes, and the surface 

charge remained positive but was lower after formulation in mannitol. This may be due to 

the presence of mannitol within the system. Also, the 12TPP-dendriplex/mannitol 

microparticles revealed a slight increase in % eGFP knockdown but not statistically 

different from 12TPP-dendriplexes strongly suggesting that biological activity of siRNA 

remains unaffected upon spray drying (Figure 4.5).  

Consequently, 12TPP-dendriplex/mannitol microparticles were further tested for 

their aerosol performance in pMDI and DPI formulations in vitro using an Anderson 
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Cascade Impactor (ACI). An ACI, comprised with eight stages, has been widely 

recognized as an adequate in vitro lung model to assess the aerosol performance of the 

pMDI and DPI formulations in which various aerosol performance characteristics/values 

can be determined.291 Median mass aerodynamic diameter (MMAD) is defined as median 

of airborne particle mass distribution with respect to aerodynamic diameter,96 signifying 

the aerodynamic diameter which half of the aerosolized drug mass is below the diameter 

stated.292  Geometric standard deviation (GSD) is always reported with MMAD, showing 

the variability of particle size distribution, the spread of the aerodynamic diameters from 

the median.96, 292 Both the MMAD and GSD values for the pMDI and DPI formulations 

demonstrated appropriate values suitable for deep lung deposition efficient deposition in 

deep lung (Table B1, Table B2).293  

One key aerosol characteristic that was measured is the fine particle fraction 

(FPF). The FPF is an indicative of the efficiency of deep lung deposition of inhalation 

formulations, with aerodynamic diameters of less than 5 µm.294  The FPF is considered 

an important aerosol characteristic to determine the therapeutically beneficial proportion 

of the siRNA that can reach the lower lung airways (trachea to alveoli). The FPF of the 

pMDI formulation (Table S1) is comparable to commercial HFA-based pMDI formulations 

of small molecule therapeutics (range on average 30-55%),295 whose formulation and 

device are extensively optimized before reaching the market.  These results are also 

consistent with our previous particle engineering strategies whereby biodegradable 

polymers were employed to encapsulate siRNA-G4NH2 dendriplexes, where we reported 

an FPF of ca. 49 ± 6 % for dendrimer-siRNA complexes (no TPP).96 The DPI formulation 

revealed an FPF (Table B2) that falls in the reported range that varies from 12 to 40% of 
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emitted dose among different DPIs.296 Therefore, this formulation falls within what is 

generally seen with DPI formulations. In conclusion, the particle PMDI and DPI 

formulation strategies were successful in producing microparticles containing inhalable 

siRNA with suitable aerosol characteristics.   

4.5 Conclusion 

Synthetic siRNA can be an effective therapeutic in the treatment of a number of 

lung diseases. In this work, we evaluated the impact of TPP surface modification of 

G4NH2 dendrimers on the modulation of their interaction with siRNA, and subsequently 

on the gene knockdown ability of the dendriplexes in an in vitro model of the pulmonary 

epithelium. The presence of TPP on the dendrimer surface resulted in enhanced eGFP 

gene knockdown in eGFP-A549 cells.  Dendriplexes with the dendrimers containing the 

highest surface density of TPP (G4NH2-12TPP) and at N/P 30 showed the best gene 

knockdown efficiency compared to all other systems, including G4NH2-0TPP. The 

improvement in transfection efficiency was associated with looser complexation of siRNA 

with dendrimer and may also be associated with other factors including mitochondrial 

targeting, enhanced cellular internalization, and more efficient endolysosomal escape of 

the TPP-dendriplexes. The G4NH2-12TPP-dendriplexes were also formulated in portable 

inhalers to assess their potential for the local delivery of siRNA to the pulmonary 

epithelium. G4NH2-12TPP-dendriplexes were spray-dried with mannitol resulting in 

micron particles with high encapsulation efficiency.  These particles were formulated in 

pMDIs and DPIs, with resulting aerosol characteristics that are conducive to deep lung 

deposition (FPF of ca. 50% and 39%, respectively), while the formulation and 

aerosolization had no impact on the transfection efficiency of the G4NH2-12TPP-
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dendriplexes. The proposed G4NH2-12TPP-dendriplexes and their aerosol formulations 

hold promise in the local delivery of siRNA to the lung epithelium for the treatment of 

relevant pulmonary diseases. 
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CHAPTER 5 – SYNTHESIS OF ASYMMETRIC DENDRIMERS CONTAINING DOX AND 
VARIOUS SURFACE MODIFICATIONS BY CLICK CHEMISTRY 
 
5.1 Introduction 

 Of all the polymeric nanocarriers, dendrimers have shown great promise in the 

delivery of various drugs, peptides, antibodies, and genetic materials (DNAs/siRNAs) into 

intracellular targets within cells, as well as altering the pharmacokinetics and 

biodistribution.36, 47 Dendrimers are hyperbranched tree-like polymers with nanometer 

sizes containing a central core, repeating branching units (known as dendrons) with a 

multitude of surface groups.35 They are characterized by their unique properties including 

monodispersity, small tunable sizes, and multiple surface groups for modification, 

reproducible pharmacokinetics, and controlled therapeutic release.33, 36 This allows for 

the increase in the solubility and bioavailability of therapeutics attached covalently, 

encapsulated, or complexed with, and allow for multiple attachments for therapeutics as 

well as targeting ligands and surface modulators that can enhance pharmacokinetics and 

biodistribution while reducing unwanted side effects.34, 36 These characteristics make 

dendrimers an attractive choice for polymeric drug delivery.  

It is known that he endocytic internalization and intracellular trafficking within cells 

can affect the therapeutic performance.46 There are several mechanisms of cellular 

transport across cellular membranes including endocytosis, passive diffusion, and 

paracellular transport.47 It has been demonstrated that major factors that influences 

cellular internalization and intracellular trafficking of dendrimers, as well as their in vitro 

and in vivo toxicity is the size (molecular weight and generation) and the surface 

chemistry.47, 297 Of dendrimers, PAMAM dendrimers were the most extensively studied. It 

was found that PAMAM dendrimers were more readily transported across epithelial 
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barriers compared with water-soluble linear polymers.47 Charged dendrimers have shown 

increase permeability compared to neutral dendrimers. Cationic amine-terminated (-NH2) 

were demonstrated the highest permeability compared to anionic carboxyl-terminated (-

COOH) dendrimers, in which -NH2 decreases with size as -COOH increases with size.47 

 However, these parameters (molecular weight, generation, and surface charge) 

can also largely dependent on cell type taken up.47 Studies on human lung alveolar 

epithelial adenocarcinoma cells (A549) revealed PAMAM G4-COOH anionic dendrimers 

were internalized by caveolae-mediated endocytosis whereas cationic G4-NH2 and 

neutral G4-OH dendrimers were internalized by non-clathrin, non-caveolae-mediated 

mechanisms that involved electrostatic interactions or other non-specific fluid-phase 

endocytosis.108 Also, it was demonstrated that cationic G4-NH2 dendrimers, once 

internalized were found more in peripheral vesicles, whereas anionic G4-COOH and 

neutral G4-OH dendrimers were found in lysosomes.108 When it comes to polarized 

epithelial cells such as Caco-2 or Calu-3, paracellular transport can also occur.287, 298 In 

this case Kitchens et al. demonstrated extensive studies on dendrimer size (generation 

and MW) and surface charge (neutral, anionic, cationic) on the ability to permeate Caco-

2 cells, demonstrating similar trends as described above.298 However, a reduction in 

transepithelial electrical resistance (TEER) readings was seen for cationic PAMAM -NH2 

dendrimers and with anionic PAMAM -COOH dendrimers within a specific size range 

(G2.5-3.5), demonstrating enhanced permeability of dendrimers by opening of tight 

junctions suggesting PAMAM dendrimers are also transported through paracellular route. 

This was not seen for neutral PAMAM -OH dendrimers.298 Therefore, it is important not 
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only to understand dendrimer properties, but how those propertied influence the cellular 

environment in which you intend to expose them to.  

Modifications to the dendrimer surface including addition of linear water-soluble 

polymers like poly(ethylene)glycol (PEG) and lipophilic molecules like lauryl chains can 

also influence the cellular internalization pathways and intracellular trafficking. Addition of 

PEG to dendrimers been shown to modulate PAMAM dendrimer properties by decreasing 

toxicity, improving circulation time, protecting therapeutic payload, increasing aqueous 

compatibility, and modulating cellular internalization.287 The modification of G3-NH2 

PAMAM dendrimers with PEG on surface was able to demonstrate decrease 

internalization within polarized Calu-3 cells (human lung epithelial cells), however, 

increased transport across monolayer via transcellular and paracellular routes.287 This 

was further demonstrated in vivo when these dendrimers were delivered via pulmonary 

route, in which high peak plasma concentrations were seen when G3-NH2 PAMAM 

dendrimers were PEGylated demonstrating dendrimers being transported across the 

lungs into systemic circulation.287 The addition of lauryl groups has also be added to 

dendrimers to modulate decrease toxicity (cationic dendrimers), increased internalization 

by interactions with the fluidity of the membrane and regulation of paracellular route.110 

G3-NH2 dendrimers modified with two lauroyl chains was found to be internalized by 

caveolae-dependent and clathrin-dependent endocytosis as well as micropinocytosis with 

trafficking to endosomes and lysosomes in an human colon adenocarcinoma cell line – 

HT-29.109 It was also demonstrated that G2-G4 PAMAM -NH2 dendrimers modified with 

lauroyl chloride was able to decrease toxicity of cationic dendrimers as well as increase 

transport across Caco-2 cells via transcellular and paracellular routes.110 



www.manaraa.com

122 
 

 
 

Understanding internalization pathways and cellular trafficking can in the specific 

cell type of interest had important implications in choosing and designing correct type of 

nanocarrier and drug-nanocarrier conjugation. This has been demonstrated with the 

efficacy of methotrexate (MTX) conjugated to cationic vs anionic dendrimers. Anionic-

MTX dendrimers were 25 times more efficacious then cationic-MTX dendrimers in which 

there higher localization and increased residence time in lysosomes was seen for anionic-

MTX dendrimers.47  Therefore, designing the correct dendrimer system, conjugation 

between therapeutic and dendrimer, and route of delivery must all be coordinated in order 

to achieve the highest efficacy.  

Recent advances in dendrimers has also been established by formation of 

dendrimers formed from polyester-based materials. Bis-MPA polyester dendrimers, first 

described by Ihre, et al.,161 and have been shown to provide an alternative dendrimer 

compared to PAMAM as demonstrating decreased toxicity compared to G4 PAMAM 

dendrimers, as well as providing a more biodegradable and biocompatible option. We 

have previously demonstrated that the use of Bis-MPA polyester dendrimers and 

PEGlyated bis-MPA dendrimers demonstrating decreased internalization and increased 

transport of dendrimers across Calu-3 epithelium as seen with PAMAM dendrimers.164, 

287 The increased interest in multifunctionality has expanded the pursuit of asymmetric or 

heterobifunctional dendrimers.40 However, little is known on the internalization pathways 

and cellular trafficking of such heterobifunctional dendrimers and how this can influence 

drug release and overall efficacy in vitro and in vivo.   

Considering these aspects, the goal of this study was to synthesize dendrons 

containing different surface chemistries that could potential alter cellular internalization 
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and cellular trafficking, which attached with drug could influence overall efficacy of drug-

polymer conjugate. Here we modified Generation 5 Bis-MPA polyester dendrons with 

various modifications to change surface chemistry including cationic amine-terminated (-

NH2), anionic carboxy-terminated (-COOH), neutral hydroxy-terminated (-OH), 

hydrophilic PEGylated (-PEG), and hydrophobic lauryl-modified (-LA) functionalities. The 

chemical synthesis and characterization of all modified dendrons were established.  

5.2 Materials and Methods   

5.2.1 Materials 

32 hydroxyl, 1 azide, generation 5, 95% (N3-G5-OH), succinic anhydride (SA), 

glutaric anhydride (GA), 2,5-dihydoxybenzoic acid (DHB), were purchased form Sigma-

Aldrich (St Louis, MO, USA). N,N-Diisopropylethylamine (DIPEA) was purchased from 

TCI Co., Ltd. (Tokyo, Japan). Dichloromethane (DCM), hexane, dimethylformamide 

(DMF), dimethyl sulfoxide (DMSO), ethyl ether (Et2O), and methanol (MeOH) were 

purchased from VWR International (Radnor, PA, USA). 1-dodecanol (lauryl alcohol, LA), 

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), 4-

(Dimethylamino)pyridine (DMAP), N,N-Dimethylformamide (DMF), anhydrous, 99/8+%, 

6-(Boc-amino)hexanoic acid (AHA-Boc), and 4M Hydrogen chloride in 1,4-dioxane was 

purchased from Alfa Aesar (Haverhill, MA, USA). Dimethyl Sulfoxide-D6 (with TMS - 0.03 

vol%), Methanol-D4, and magnesium sulfate anhydrous were purchased from EMD 

Millipore (Burlington, MA, USA). Deuterium Oxide (D2O, 99.9%) was purchased from 

Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA). Poly(ethylene)glycol 1000 

monomethyl ether (PEG) was purchased from Fluka (Mexico City, Mexico).  
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5.2.2 Conjugation of lauryl alcohol (LA) with succinic anhydride (SA) form lauryl-

succinic acid (LA-SA) 

Lauryl alcohol (LA) was modified to contain carboxyl group by addition of succinic 

anhydride (SA) for form LA-SA product. 1.205 ml (5.37 mmol) of LA was reacted with 

1.07727 g (10.77 mmol) of succinic anhydride (SA) with 3.651 ml (21.47 mmol) of N,N-

Diisopropylethylamine (DIPEA) in a mixture of  11 ml DCM/DMF (6:5, v/v) at room 

temperature for 24 h. The solvents were removed, and product was redissolved in 50 ml 

ethyl ether followed by extraction with hexane. The hexane was removed by rotary 

evaporation (Buchi Rotavapor® R-3) (40°C) to obtain white/pink crystal product. The LA-

SA product was characterized with MALDI-TOF (Voyager-DE PRO, JBI Scientific) and 1H 

NMR (Bruker NanoBay Avance III 400 MHz NMR spectrometer). 

5.2.3 Conjugation of LA-SA to Azido-G5-OH (N3-G5-OH) dendron to form Azido-G5-

LA  

N3-G5-LA was synthesized by addition of 16.82 mg (4.49 µmol) of polyester bis-

MPA dendron – 32 hydroxyl, 1 azide, generation 5, (N3-G5-OH) with 26.05 mg (90.95 

µmol) of LA-SA, 27.12 mg (141.46 µmol) of EDC, and 16.79 mg (137.43 µmol) of DMAP 

in 3 ml of DMF and left to stir at room temperature for 3 days. The DMF solvent was 

removed by high vacuum. The product was redissolved in 1 ml of DMSO and put on 

dialysis against DI water for 24 h using Spectra/Por® 7 RC membrane dialysis tubing 

(MWCO = 1 kDa). The product was removed from dialysis tubing adding a small amount 

of DMSO. The DMSO solvent was removed by high vacuum to obtain sticky clear product. 

The N3-G5-LA product was characterized using MALDI-TOF, 1H NMR and Light 

Scattering (Malvern Zetasizer Nano ZS).  
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5.2.4 Conjugation of polyethylene glycol (PEG) with succinic anhydride to form 

PEG-SA  

  5.44 g (5.44 mmol) of Poly(ethylene)glycol 1000 monomethyl ether (PEG) was 

modified by addition of 1.08172 g (10.81 mmol) of SA with 3.671 ml (21.07 mmol) of 

DIPEA in 2.5 ml of DMF and stirred at room temperature for 24 h to form PEG-SA. PEG-

SA product was then precipitated in 70 ml of cold ethyl ether followed by suction filtration. 

The precipitated product was then dissolved in 75 ml of acidic water (pH 3.0) and 

extracted with dichloromethane (DCM), 3 x 50 ml. The collected DCM with PEG-SA 

product was dried over anhydrous magnesium sulfate overnight, followed by filtration and 

removal of DCM solvent by rotary evaporation (40°C). The PEG-SA product was 

redissolved in DI water, frozen, and lyophilized to obtain white crystal. The PEG-SA was 

characterized by MALDI-TOF and 1H NMR. 

5.2.5 Conjugation of succinic anhydride (SA) to N3-G5-OH to form N3-G5-SA 

10.08 mg (2.69 µmol) of Polyester bis-MPA dendron – 32 hydroxyl, 1 azide, 

generation 5, (N3-G5-OH) was added with 295.27 mg (268.43 µmol) of PEG-SA catalyzed 

by 86.46 mg (450.99 µmol) of EDC and 50.82 mg (415.98 µmol) of DMAP in 3.8 ml of 

DMF and allowed to react at room temperature for 5 days. The DMF solvent was removed 

by high vacuum followed by dialysis against DMSO using Spectra/Por® 7 RC membrane 

dialysis tubing (MWCO = 8 kDa) for 24 hours. The excess DMSO was removed by high 

vacuum to leave sticky clear product. The N3-G5-PEG product was characterized with 

MALDI-TOF, 1H NMR, and Light Scattering. 
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5.2.6 Conjugation of Boc-6-Ahx-OH to N3-G5-OH dendron followed by Boc 

deprotection to form N3-G5-NH2 dendron 

Amine modification of dendron was synthesized by addition of 10.56 mg (2.82 

µmol) N3-G5-OH dendron with 52.73 mg (227.98 µmol) 6-(Boc-amino)hexionic acid 

(AHA-Boc), 66.61 mg (347.45 µmol) of EDC, and 44.98 mg (368.18 µmol) of DMAP in 

5.1 ml in DMF and allowed to react for 9 days at room temperature. The DMF solvent was 

subsequently removed by high vacuum without further purification. The Boc deprotection 

was performed by addition of 1 ml of 4 M HCl in 1,4-dioxane for 30 min at room 

temperature. The solvent was then removed by rotary evaporation followed by dialysis 

against DMSO using Spectra/Por® 7 RC membrane dialysis tubing (MWCO = 1 kDa) for 

2 days. After dialysis, the DMSO solvent was removed by high vacuum to leave sticky 

clear product. The N3-G5-NH2 product was characterized by MALDI-TOF, 1H NMR and 

Light Scattering.  

5.3 Results 

5.3.1 Conjugation of lauryl alcohol (LA) with succinic anhydride (SA) form lauryl-

succinic acid (LA-SA) 

 Lauryl alcohol (LA) was modified with succinic anhydride (SA) to form LA-SA as 

seen in Scheme 5.1.  

Scheme 5.1. The modification of LA to contain -COOH group by addition of succinic 

anhydride (SA) to form LA-SA. 
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The characterization of LA-SA with 1H NMR and MALDI-TOF can be found in Figure 4.1. 

LA-SA: 1H-NMR (MeOD, 400MHz, ppm): δ 4.08 (t, 2H), 2.58 (s, 4H), 1.63 (m, 2H), 1.30 

(s, 18H), 0.90 (t, 3H). MALDI-TOF MS: 309.7.  

 

 

5.3.2 Conjugation of LA-SA to Azido-G5-OH (N3-G5-OH) dendron to form Azido-G5-

LA 

LA-SA was added to the surface of N3-G5-OH dendron to form N3-G5-LA as seen 

in Scheme 5.2. 

Figure 5.1. A) Chemical structure of LA and LA-SA and the corresponding B) 
1
H NMR 

and C) MALDI-TOF spectra.  
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The characterization of N3-G5-LA with 1H NMR and MALDI-TOF can be found in Figure 

5.2. N3-G5-LA: 1H-NMR (DMSO-d6, 400MHz, ppm): δ 4.10-3.43 (m, 170H), 2.37-2.22 

(m, 48H), 1.68-1.53 (m, 32H), 1.24 (s, 216H), 1.19-1.04 (m, 92H) 0.85 (t, 36H).  MALDI-

TOF MS: 6965.5. LS ζ-potential: +27 ± 6 mV 

 

5.3.3 Conjugation of polyethyleneglycol (PEG) with succinic anhydride to form 

PEG-SA. 

Poly(ethylene) glycol monomethyl ether (PEG, MW:1000) modified with succinic 

anhydride (SA) to form PEG-SA as seen in Scheme 5.3. 

Scheme 5.2. The modification of N3-G5-OH dendron to contain lauryl surface by 

addition of LA-SA to form N3-G5-LA; Azido = N3. 

Figure 5.2. A) Chemical structure of N3-G5-OH and N3-G5-LA, and the corresponding 

B) 
1
H NMR and C) MALDI-TOF spectra.  
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The characterization of PEG-SA with 1H NMR and MALDI-TOF can be found in Figure 

5.3. PEG-SA: 1H-NMR (D2O, 400MHz, ppm): δ 4.28 (m, 2H), 3.69 (s, 172H), 3.37 (s, 

32H), 2.69 (s, 4H).  MALDI-TOF MS: 1123.6.  

 

5.3.4 Conjugation of PEG-SA to N3-G5-OH to form N3-G5-PEG dendron 

PEG-SA was added to the surface of N3-G5-OH dendron to form N3-G5-PEG as 

seen in Scheme 5.4. 

Scheme 5.3. The modification of PEG to contain -COOH group by addition of SA to 

form PEG-SA. 

Figure 5.3. A) Chemical structure of PEG and PEG-SA, and the corresponding B) 
1
H 

NMR and C) MALDI-TOF spectra.  
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The characterization of N3-G5-PEG with 1H NMR and MALDI-TOF can be found in Figure 

5.4. N3-G5-PEG: 1H-NMR (DMSO-d6, 400MHz, ppm): δ 4.31-4.11 (m, 133H), 3.51 (s, 

2580H), 3.24 (s, 245H), 2.51 (m, 60H), 1.24 (s, 216H), 1.16-1.00 (m, 92H). MALDI-TOF 

MS: 20277.1. LS ζ-potential: -13 ± 4 mV. 

 

5.3.5 Conjugation of succinic anhydride (SA) to N3-G5-OH to form N3-G5-SA 

Succinic anhydride (SA) was added to the surface of N3-G5-OH dendron to form 

N3-G5-SA as seen in Scheme 5.5. 

Scheme 5.4. The modification of N3-G5-OH with PEG by addition of PEG-SA to form 

N3-G5-PEG. 

Figure 5.4. A) Chemical structure of N3-G5-OH and N3-G5-PEG, and the 

corresponding B) 
1
H NMR and C) MALDI-TOF spectra.  
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The characterization of N3-G5-SA with 1H NMR and MALDI-TOF can be found in Figure 

5.5. N3-G5-SA: 1H-NMR (DMSO-d6, 400MHz, ppm): δ 4.19.-4.12 (m, 129H), 2.52-2.41 

(m, 128H), 1.59-1.33 (m, 8H), 1.20-1.14 (m, 92H). MALDI-TOF MS: 6960.6. LS ζ-

potential: -30 ± 8 mV. 

 

5.3.6 Conjugation of Boc-6-Ahx-OH to N3-G5-OH dendron followed by Boc 

deprotection to form N3-G5-NH2 dendron 

Scheme 5.5. The modification of N3-G5-OH to contain -COOH surface by addition of 

SA to form N3-G5-SA. 

Figure 5.5. A) Chemical structure of N3-G5-OH and N3-G5-SA, and the corresponding 

B) 
1
H NMR and C) MALDI-TOF spectra.  
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Boc-6-Ahx-OH was added to the surface of N3-G5-OH dendron to form N3-G5-Boc 

followed by subsequent Boc deprotection to form N3-G5-NH2 as seen in Scheme 5.6. 

 

The characterization of N3-G5-NH2 with 1H NMR and MALDI-TOF can be found in Figure 

5.6. N3-G5-NH2: 1H-NMR (DMSO-d6, 400MHz, ppm): δ 4.18.-4.04 (m, 108H), 3.51-3.41 

(m, 14H), 2.74-2.73 (m, 52H), 2.37-2.27 (m, 52H), 1.59-1.47 (m, 108H) 1.32-1.31 (m, 

56H), 1.19-0.96 (m, 92H). MALDI-TOF MS: 6685.9. LS ζ-potential: +48 ± 7 mV.  

 

 

Scheme 5.6. The modification of N3-G5-OH to contain -NH2 surface by addition of A) 

AHA-Boc followed by B) Boc deprotection to form N3-G5-NH2. 
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5.4 Discussion 

 Recently, the versatility and complexity of dendrimer synthesis has been explored 

for various biological and drug delivery applications.39-41 Bis-MPA polyester dendrimers 

have emerged as an alternative improvement on other dendrimers such as PAMAM 

dendrimers by being biodegradable via hydrolysis (not seen with PAMAM) and more 

biocompatible (less toxic and less immunogenic).38 Heterobifunctional (AKA bow-tie, 

Janus-type) asymmetric Bis-MPA polyester dendrimers have gained interest due to their 

multifunctionality.45, 167 However, the major drawback remains the complexity of synthesis 

in such type of systems.167 In this study, we present here a facile way of modifying the 

surface of Azido-G5-OH polyester Bis-MPA dendrons with various surface modifications: 

-COOH (anionic), -NH2 (cationic), hydrophilic (-PEG), hydrophobic (-Lauryl), and 

unmodified neutral (-OH).  

Figure 5.6. A) Chemical structure of N3-G5-OH and N3-G5-Boc, and N3-G5-NH2, and 

the corresponding B) 
1
H NMR and C) MALDI-TOF spectra.  
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Here, successful synthesis and characterization of the surface modifications N3-

G5-OH polyester Bis-MPA dendrons are described and characterized. A summary of 

overall modifications is described in Table 5.1.  

Table 5.1. Characterization of modified Azido-G5-OH dendrons *MW based on 

MALD-TOF results.  

Dendron Group # Modified MW (g/mol)* ζ potential  

(mV) 

N3-G5-OH -OH (hydroxyl) 32 3742.8 +31 ± 6 
N3-G5-SA -COOH (carboxyl) 32 6959.4 -30 ± 8 
N3-G5-NH2 -NH2 (amine) 26 6685.9 +48 ± 7 
N3-G5-PEG -PEG 15 20277.1 -13 ± 4 
N3-G5-LA -lauryl 12 6966.6 +27 ± 6 

 

The neutral N3-G5-OH remained unmodified from the company it was purchased with 32 

-OH surface groups available for attachment. Surface charge measured by LS was found 

to be positively charged, mainly due to the presence of the azido group (-N3). Once 

conjugated to other dendron to form dendrimer, without presence of azido, a decrease in 

surface charge more towards neutral is expected, which was seen when two dendrons 

were conjugated to form -OH dendrimer when overall dendrimer became negatively 

charged (Appendix 5 -Section C5). All bonds within the polyester dendron as well as 

surface modifications are linked by ester groups. This maintains the biodegradability of 

the dendrons via hydrolysis. However, the hydrolysis of dendrons may be affected by the 

presence of various surface groups, as was seen in PEGylation of TMPG4OH polyester 

dendrimers, in which the degradation was delayed from starting after 5 hours for 

TMPG4OH and delayed to 5 days at physiological conditions (pH = 7.4, 37°C),164 and 

can have large implications in terms of stability in vivo. However, to this date, no polyester 

dendrimer degradation profile has been measured in vivo demonstrating a need for 
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further investigation.  Of the modifications an anionic carboxyl group (-COOH) was 

modified to the surface to all available 32 surface groups. The surface charge measured 

by LS demonstrates an overall negative charge, a reversal seen from unmodified 

dendron, and can represent an anionic surface modification. An amine (-NH2) modified 

dendrimer was also successfully attached to the N3-G5-OH dendron to form N3-G5-NH2. 

Of the 32 groups available, 26 groups were modified to amine. A positive surface charge 

was measured by LS and proved to be larger than that of unmodified N3-G5-OH dendron, 

demonstrating an overall positive surface charge providing a cationic surface, which is 

believed to be maintained after the conjugation of dendron to form an asymmetric 

dendrimer. To provide hydrophilic and hydrophobic surfaces, the N3-G5-OH dendron was 

modified with PEG and lauryl groups, respectively. N3-G5-PEG had a modification of 15 

of the surface groups while lauryl had a surface modification of around 12 of the surface 

groups. The surface charge for N3-G5-PEG became overall negatively-charged (Table 

4.1). It was expected to provide a more neutral charge to dendron as PEG has proven to 

do so previously.164 The presence of some negative charge may be due to the fact of a 

small presence of PEG-SA, in which SA itself containing carboxyl group may be 

attributing to the negative charge measured from LS. The surface charge for the N3-G5-

LA was positively charged, however, slightly less than N3-G5-OH dendron and not overall 

statistically different. Therefore, the presence of LA did not affect the overall surface 

charge of the dendron. Overall, the various surface modifications represent different 

surface properties, which has been shown to affect cellular internalization and cellular 

trafficking of various dendrimers before.47 
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These surface modifications have implications on drug delivery by altering the 

cellular internalization and cellular trafficking into cells.47 Depending on the cell type and 

surface modification on dendron, varied cellular internalization pathways as well as 

cellular trafficking can occur. This can influence efficacy of drug conjugated to polymer 

systems in which the type of linker containing a liable bond between drug and polymer 

can be effectively broken. Such linkers include peptide bonds and pH-sensitve bonds (cis-

aconityl, hydrazine, acetal).186 These linkers need to be internalized and trafficked to 

correct location in order to have optimal linker breakage and controlled release of the 

drug. Also, implications on cell type and route of administration can play a huge role in 

drug efficacy and need to be tailored for specific drug delivery applications.36, 47 

With the success in surface modifications on N3-G5-OH have been established, a 

drug conjugation to another dendron using a linker will have to take place. In this case, 

the use of doxorubicin (DOX) as our model drug will be linked to the Acet-G5-OH Bis-

MPA polyester dendrons using a small peptide linker between the dendron and DOX for 

enzymatically controlled release. A chemical scheme strategy for modifications has been 

proposed (Schemes C1-C4). A peptide linker Gly-Phe-Leu-Gly (GLFG) was chosen to be 

at cleavable linker between DOX and Acet-G5-OH. This GFLG linker strategy has been 

utilized for DOX conjugation to polymer previously.299, 300 GLFG linker is enzymatically 

degraded by protease cathepsin B,186 which and upregulated in many cancerous 

tumors.301 They are expressed constitutively, and the protein and mRNA levels has been 

found localized in perinuclear vesicles (lysosomes) and vesicles in the cytoplasm and cell 

periphery where its main function is to assist in cell degradation processes associated 

with tumor proliferation, invasion, and metastasis.301 Therefore, once internalized into 
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cells, the bond between the DOX can be released by enzymatic degradation of GFLG 

peptide, allowing for controlled release of the DOX. We currently have formulated GFLG-

DOX in which synthesis and characterization can be found in Appendix C – Sections C2 

and C3. Modification of Acet-G5-OH dendron was also required for formation of -COOH 

surface functionality. This -COOH allows for amide formation between the dendron and 

GFLG-DOX, which has also been synthesized and characterized (Appendix C – Section 

C4, Scheme C3. Therefore, the conjugation between the acet-G5-GA and GFLG-DOX 

has been proposed (Scheme C4). The potential of this conjugation scheme has been 

tested on a G4 carboxyl-terminated PAMAM dendrimer with success. A matter of 

upscaling GFLG-DOX product remains the limiting factor. 

Another question to consider is the formation of the asymmetric dendrimers from 

GFLG-DOX containing dendron and the dendrons modified with various surface 

modalities. Each dendron contains an acetylene and azide group, which can be 

conjugated through Azide/Alkyne cycloaddition click chemistry.168 A modification of the 

chemistry proposed by Ackermann, et al.302 was tested between Acet-G5-OH and N3-

G5-OH dendrons. Due to the steric hindrance of these two molecules, modifications in 

the protocol were required to increase yield of dendrimer formation from dendrons and 

size exclusion chromatography allowed for successful purification of dendrimer formed 

from dendrons (Appendix C – Section C5, Scheme C5, Figure C2). This strategy can be 

applied to connect GFLG-DOX containing dendron and the dendrons modified with 

various surface modalities. The limitations may occur based on difficulty in chemistry 

involved in these reactions to from asymmetric dendrons, which remains the main 

challenge for this type of dendrimer formation for drug delivery. However, the potential 
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benefits may be elucidated once these asymmetric dendrimers can be tested in vitro and 

in vivo.  

5.5 Conclusions 

 The potential benefits from formation of asymmetric dendrimers for drug delivery 

needs to be further explored, especially in terms of cellular internalization and cellular 

trafficking, pharmacokinetics and pharmacodynamics of such systems and how it can 

influence drug efficacy. The largest challenge in formation of asymmetric dendrimers is 

the synthesis of such complex polymers.45 Here, we proven a facile way to modify the 

surface of N3-G5-OH Bis-MPA polyester dendrons with varying surface groups with 

different surface characteristics. The addition of DOX conjugated through GFLG linker to 

acet-G5-OH dendron has been proposed and use of click chemistry and size exclusion 

chromatography to form asymmetric dendrimers has been tested. The potential in such 

asymmetric dendrimers remains to be elucidated in order to optimize drug efficacy.  
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CHAPTER 6 – LOCALLY ADMINISTERED IMMUNOMODULATORS FOR 
MACROPHAGE REPOLARIZATION AND COMBINATION CHEMOTHERAPY FOR 
THE TREATMENT OF LUNG CANCERS  
 
6.1 Introduction 

 Tumor associated macrophages (TAMs) are the most abundant cell-type besides 

cancerous cells found within the tumor microenvironment (TME), and are known to 

influence tumor initiation, growth, and metastasis.80, 81 TAMs are derived from circulating 

monocytes and preclinical studies have demonstrated enhanced therapeutic 

performance when TAMs entry to TME is blocked or when TAM phenotype is 

manipulated.81 TAM phenotypes are seen as a continuous spectrum, however, can be 

classified into two opposing types: M1 and M2. M1 TAMs are known as classically 

activated macrophages and are known to be antitumor, proinflammatory, and 

immunostimulatory.81 M2 TAMs are known to be protumor, anti-inflammatory, 

immunosuppressive, and proangiogenic.80, 81 The presence of M2 TAMs are found in 

early stages of tumors as well as the metastatic stages, and especially in cases when 

tumors have been treated with chemotherapeutics.20, 81 Many preclinical and clinical 

studies have demonstrated that TAM density, and more specifically small M1/M2 ratios 

(high density of M2), is correlated with poor prognosis, which has lead TAMs to be an 

attractive therapeutic target in many cancer types.81, 222 Resistance to therapy can be 

correlated with M2 TAM presence, and is known to inhibit tumor response mediated by T 

cells, promotes tumor proliferation, progression, invasion, metastasis, and 

angiogenesis.20, 80 

 Macrophage polarization is critically controlled by the colony-stimulating factor 1/ 

colony-stimulating factor 1 receptor (CSF1R/CSF1R) signaling process.20, 80 
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CSF1/CSF1R signaling promotes proliferation and recruitment to tumors of myeloid cells 

and differentiation of these myeloid cells into M2 TAMs.82 The CSF1R+ macrophages 

have been correlated with poor survival in several tumor types.20 The inhibition of CSF1R 

by has been recently tested preclinically and clinically demonstrating selective reduction 

of M2 TAMs or polarization of M2 TAMS to M1 phenotype.80, 222 An increase in M1/M2 

ratio by increasing M1 phenotype and/or decreasing M2 phenotype has shown improved 

efficacy in cancer treatment, alone or in combination with other therapies, extending 

survival in many types of cancer.222  

There are a range of antibodies and small molecules known to target and inhibit 

CSF1R. These include monoclonal antibodies (RG7155, IMC-CS4) that inhibit the 

extracellular domain and small molecule inhibitors (CY11645, GB2580, BLX945, 

PLX5622, PLX3397) that inhibit the intracellular kinase domains of CSF1R.222 Despite 

the success of antibody treatments, they remain highly costly, which limit potential benefit 

and usage.303 Therefore, the use of small molecules has become an attractive choice for 

CSF1Ri. Of these, the one currently commercially available and is currently undergoing 

numerous clinical trials is PLX3397.20 

 PLX3397 (PLX) is an example of a small molecule inhibitor of CSF1R (CSF1Ri). 

PLX is a tyrosine kinase inhibitor, when given orally, and demonstrated increased efficacy 

in treatment preclinically82, 225 and is currently undergoing clinical trials.20, 80 PLX prevents 

intracellular phosphorylation of CSF1R on kinase domains, thus inhibiting CSF1R 

activation.222, 225 The inhibition of CSF1R thus repolarize M2 TAMs to M1 and/or 

selectively reduce M2 TAMs, thus increasing overall M1/M2 ratio.83 PLX has been used 

a monotherapy as well as in combination with chemotherapeutics, irradiation, anti-
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angiogenic therapies, and other immunotherapies for treatment of variety of tumors 

including breast and lung tumors.20, 82 The prevalence of PLX in clinical trials as a 

monotherapy and in combination with other treatments demonstrates its potential as a 

immunomodulator influencing TAMs within the TME.  

Of these, the combination of PLX with doxorubicin (DOX) remains of interest. DOX 

is a common chemotherapeutic that is administered patients who have metastatic form 

of breast cancer and delivered intravenously (IV).71 However, DOX has limitations in 

terms of clinical benefit including limited aqueous solubility, rapid elimination from blood 

circulation, and severe cardiomyopathy.304-306 Despite these issues with DOX, 

conjugation to polymeric nanocarriers such as polyamidoamine dendrimers (PAMAM) 

can overcome some of these limitations by enhancing drug solubility, enhance 

pharmacokinetics and pharmacodynamics, and  reduce unwanted side effects.34, 36 

Recently, our group has investigated the potential of conjugation of DOX to PAMAM 

dendrimer (DDOX) and its pulmonary delivery, demonstrating controlled drug release, 

increased efficacy to treat secondary lung tumors from B16F10 murine metastatic 

melanoma, increased drug dose to target site, and reduced cardiotoxicity.77 Therefore, 

the testing of DDOX and PLX in combination was by pulmonary administration (PA) may 

provide a synergetic effect and increase overall treatment efficacy.  

Consequently, the efficacy of PLX alone or in combination remains to be explored. 

The combination of PLX with DOX and DDOX has not been tested for synergistic 

interactions. The use of PLX given via other routes besides oral has also not been 

evaluated. Therefore, this study was conducted to investigate the potential synergistic 

effect of PLX with DOX/DDOX for treatment of lung tumors metastasized from metastatic 
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breast cancer to the lungs (secondary lung tumors) upon pulmonary administration. 

Efficacy of PLX alone or in combination when administered intravenously (IV) was also 

evaluated as control. The treatments (PLX, DOX, and DDOX) were tested in vivo on 4T1-

induced lung metastases established in female BALB/C mice. This, thus represents an 

immune competent syngeneic model. Preliminary results investigating the effectiveness 

of treatment strategies was evaluated and, and modulation of macrophages from M2 to 

M1 phenotypes are reported here. These studies are ongoing in our laboratories to fully 

assess the potential of TAM reprograming agents and combination with chemotherapy 

(immunochemotherapies) in combination with pulmonary administration as well as with 

the use of nanotechnologies to enhance the performance of these therapies. 

6.2 Materials and Methods   

6.2.1 Materials 

 Penicillin/Streptomycin Solution was purchased from Gemini Bio-Products (West 

Sacramento, CA, USA). Puromycin Dihydrochloride, Powder (Corning®), Dulbecco's 

Modification of Eagle's Medium (DMEM), Corning®, 4.5 g/L glucose, L-glutamine [-] 

sodium pyruvate, N-methylmorpholine (NMM), isobutyl chloroformate (IBCF), anhydrous 

dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and methanol (MeOH) were 

purchased from VWR International (Radnor, PA, USA).  Fetal Bovine Serum (FBS), USA 

Origin, was purchased form Serum Source International (Charlotte, NC, USA). 

Generation four, succinamic acid, poly(amidoamine) (PAMAM) dendrimer (G4-SA) 

provided in water was purchased from Dendritech Inc. (Midland, MI). D-luciferin 

Potassium Salt was purchased form Syd Labs. (Natick, MA, USA). Doxorubicin 

hydrochloride salt (DOX•HCl) was purchased from LC Laboratories (Woburn, MA, USA).  
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Pexidartinib (PLX3397, PLX) was purchased form Chemgood (Glen Allen, VA, USA). 

Tert-Butyl carbamate (TBC), trifluoracetic acid (TFA), triethylamine (TEA), 2,5-

dihydroxybenzoic acid (DHB), and Tween #80 was purchased from Sigma Aldrich (St 

Louis, MO, USA). Dimethyl Sulfoxide-D6 (with TMS - 0.03 vol%) and magnesium sulfate 

anhydrous were purchased from EMD Millipore (Burlington, MA, USA). Spectra/Por® 7 

RC membrane dialysis tubing (MWCO = 3 kDa) was purchased from Spectrum 

Laboratories, Inc. (Rancho Dominguez, CA, USA). Amicon Ultra-15 centrifugal filter 

(NMWL = 3,000) was purchased from MilliporeSigma (Burlington, MA, USA). Thin layer 

chromatography (TLC) silica gel 60 F254 purchased from Merck KGaA (Darmstadt, 

Germany). 

6.2.2 Synthesis and Characterization of G4SA-hyd-DOX (DDOX)  

The synthesis and characterization of doxorubicin conjugated to G4SA PAMAM 

dendrimer (1 mol eqv) to form was described in detail, previously.77 Breifly, G4SA (3.80 

µmol) was mixed with NMM (1.07 mmol)  and IBCF (1.02 mmol) in a mixture of 

DMSO/DMF (10/90, v/v) at 0°C for 5 min before the addition of TBC (0.243 mmol), in 

which the reaction was kept at 0°C for an additional 30 min followed by continuation of 

the reaction at room temperature for 48 h. The DMSO/DMF solvent mixture was removed 

under high pressure and product was redissolved in 0.1 M Phosphate buffer (pH = 10.00) 

followed by deionized (DI) water and purified using Amicon Ultra-15 centrifugal filter to 

form G4SA-TBC. The G4SA-TBC product was frozen and lyophilized. The removal of Boc 

groups from TBC occurred by addition of G4SA-TBC in TFA/DCM (80/20, v/v) stirred at 

0°C for 30 min. The solvents were again removed, and product was purified by 

redissolving it in 0.1 M Phosphate buffer (pH = 10.00) followed by DI water and purified 
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using Amicon Ultra-15 centrifugal filter. The water was removed by freezing and 

lyophilizing the product – G4SA-hyd. The addition of DOX (34.48 µmol) was done by 

dissolving G4SA-hyd (1.05 µmol) in with DOX in methanol and using TFA (16 mol eqv) 

as acid catalyst. The reaction was allowed to occur for 24 hours followed by removal of 

methanol solvent, redissolved in water, and purified by Amicon Ultra-15 centrifugal filter. 

The final G4SA-hyd-DOX (DDOX) product was frozen and lyophilized to obtain sticky red 

product. The product was fully characterized by MALDI-TOF (Voyager-DE PRO, JBI 

Scientific) and 1H NMR (Bruker NanoBay Avance III 400 MHz NMR spectrometer). 

6.2.3 Cell Culture 

Mouse stage IV breast cancer cell line (4T1) was kindly gifted by Dr. Arun Rishi 

from Oncology Department in School of Medicine at Wayne State University. 4T1 cells 

were grown on 75 cm2 cell culture flasks (Corning®) in DMEM medium supplemented with 

10% FBS and 1% antibiotics (AB) (100 U/mL Penicillin and 100 µg/mL Streptomycin) and 

cultured at 37°C with 5% CO2. 4T1-luc-tdTomato cells were also grown on 75 cm2 cell 

culture flasks (Corning®) in DMEM + 10% FBS + 4 µg/ml puromycin and cultured at 37°C 

with 5% CO2. 

6.2.4 Animals for In Vivo Experiments 

Female BALB/C mice (8-10 weeks, 16-20 g) mice were purchased by Jackson 

Laboratory (Bar Harbor, ME, USA). Male and Female BALB/C mice (3-4 weeks) were 

also purchased from Jackson Laboratory and bred at Massey Cancer Center at Virginia 

Commonwealth University. Purchased or bred female BALB/C mice (8-10 weeks) were 

used for further study. The mice were housed in 12 h light/dark cycles with food and water 

provided ad libitum and acclimatized a minimum of one week prior to any experiment 
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performed. All animal experiments were performed in accordance with guidelines 

established by Institutional Animal Care and Use Committee at Virginia Commonwealth 

University.  

6.2.5 Transformation of 4T1 Cells to Express tdTomato Fluorescence and 

Luciferase Bioluminescence.  

 To determine the minimum concentration required to kill all 4T1 cells, a Puromycin 

cell kill curve was performed following the protocol by DharmaconTM and measured by 

MTT assay (Molecular Probes). Briefly, 10,000 cells/well of 4T1 cells were seeded into a 

96-well plate (CoStar®, Corning Inc.) and left overnight. The following day, increasing 

puromycin concentrations (0-10 µg/ml) were in DMEM + 10% FBS were exposed to the 

cells for 48 h. After 48 h, medium was removed and 110 µl of 1 mM MTT solution was 

added to each well and incubated for 4 h at 37°C, 5% CO2. 75 µl was removed and 60 µl 

of DMSO was added to each well and incubated at same conditions above for an 

additional 10 minutes. Subsequently, the absorbance was measured at 540 nm using 

Synergy H1 microplate reader (BioTek). Cell viability at each concentration was 

calculated as follows: % Cell viability = (absorbance of treated cells/absorbance of control 

cells) x 100%. 

 4T1 cells were genetically modified to express firefly luciferase and tdTomato 

(bright red fluorescent protein) according to modified protocols from GenTarget307 and 

protocol provided by Dr. Yemelyanov and Dr. Bhalla from Northwestern University. 

Briefly, 25,000 4T1 cells (P14-P15 passages) were seeded in each well a 24-well 

microplate cultured with 500 µL of DMEM+10%FBS+1% AB at 37C and 5% CO2.  The 

following day, 0.833 µl lentivirus containing luciferase and tdTomato expression (1010 



www.manaraa.com

146 
 

 
 

TU/ml) (pFULT Ubi>Luciferase-2TA-dtTomato, Skin Disease Research Center, 

Northwestern University) was mixed with polybrene (8 µg/ml final concentration) in DMEM 

and mixed at room temperature for 5 min to form viral transduction mixture. 500 µl of viral 

transduction mixture was added to each well after each well was washed one with 1xPBS. 

The plate was then incubated at 37C and 5% CO2 gently rocking overnight. The following 

day, the medium containing the virus was replaced with fresh DMEM +10% FBS+ 1%AB 

for 2.5 h. A new batch of transduction mixture was made and added for an additional 8 

hours and allowed to incubate at 37C and 5% CO2 while gently rocking. The medium 

was then removed and replaced with fresh DMEM+10% FBS+ 1% AB allowed to incubate 

for an additional 72 hours. After the 72 hours, the cells were removed from the 24-well 

microplate and transferred to a T-25 flask with the addition of puromycin-selective 

medium (DMEM + 10% FBS + 4 µg/ml puromycin) to select for only cells that express the 

lentivirus. The cells grew under these conditions until they reached confluency. The 

modified cells were then sorted twice using tdTomato fluorescence expression by 

fluorescence-activating cell sorting (FACS, SC Aria- BD FACSAria™ II High-Speed Cell 

Sorter, Flow Cytometry Shared Resource Core, Virginia Commonwealth University). After 

sorting 4T1-luc-tdTomato cells were cultured in DMEM+10%FBS+1%AB+4 µg/ml 

puromycin. Cells were monitored with flow cytometry before in vivo experiments were 

performed (CytoFLEX Flow Cytometer, Beckman Coulter).  

6.2.6 In Vitro Bioluminescence Kinetics Assay of 4T1-luc-tdTomato cells 

To assess the bioluminescence of transfected 4T1-luc-tdTomato cells, kinetics of 

bioluminescent property was performed in IVIS imaging.  4T1-luc-tdTomato cells were 

seeded in a 96-well microplate at 12,500, 25,000, 50,000 and 100,000 cells per well or at 
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15,625, 31,250, 62,500, 125,000 and 250,000 cells per well in DMEM medium. A final 

concentration of 150 µg/ml of luciferin was added to each well and images were taken at 

0.5, 3, 5, 10, and 20 min using the IVIS imaging system (Xenogen IVIS Spectrum 

Preclinical In Vivo Imaging System, Cancer Mouse Models Developing Shared Resource 

Core, Virginia Commonwealth University). The in vitro kinetics of the bioluminescent 

signal was determined by plotting total flux vs time for each cell concentration.   

6.2.7 Evaluation of 4T1-luc-tdTom Metastatic Growth to the Lungs in Female 

BALB/C mice 

The first study comprised of 100 µl of 1xPBS containing 100,000 4T1-luc-tdTomato 

cells were injected IV into the tail vein of female BALB/C mice (10 weeks of age). The 

tumor growth was monitored in vivo and ex vivo by measurement of bioluminescent signal 

produced by 4T1-luc-tdTomato cells using IVIS imaging system (Xenogen IVIS Spectrum 

Preclinical In Vivo Imaging System, Cancer Mouse Models Developing Shared Resource 

Core, Virginia Commonwealth University). Imaging was performed on days 5, 8, 11, 14, 

and 18 post IV tail vein injection. All animals were sacrificed on Day 18 where ex vivo 

imaging was conducted with the lung tissue. In the second study, 100 µl of 1xPBS 

containing 250,000 4T1-luc-tdTomato cells were injected IV into the tail vein of five female 

BALB/C mice (10 weeks old). The tumor growth was monitored in vivo and ex vivo by 

measurement of bioluminescent signal produced by 4T1-luc-tdTomato cells using IVIS 

imaging system. Imaging was performed on days 5, 7, 9, and 12 days post IV injection. 

One animal was sacrificed on each day where ex vivo imaging was conducted with the 

lung tissue. For the in vivo imaging, D-luciferin (150mg/kg) substrate was added to each 

animal via subcutaneous injection and exposed to isoflurane for 10 min prior to being 
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imaged in the IVIS imaging system. For ex vivo imaging, each lung was soaked in 5-10 

mL 1XPBS containing 300µg/ml of luciferin prior to imaging. StudyLog Desktop was used 

to record and monitor animal health during the experiments. Living Image 4.5.5 Software 

(Perkin Elmer) was used to analyze images. Only analysis of upper portion of mouse was 

analyzed for in vivo images, since establishment of lung tumors was the main interest of 

this study. 

6.2.8 In vivo efficacy of PLX3397 for the treatment of Lung Metastases  

 Female BALB/C mice (8-10 weeks) were injected with 250,000 4T1-luc-tdTomato 

cells in 100 µl of 1x PBS to establish lung metastasis. IVIS imaging (Xenogen IVIS 

Spectrum Preclinical In Vivo Imaging System, Cancer Mouse Models Developing Shared 

Resource Core, Virginia Commonwealth University) was performed starting at 5 days 

post tumor inoculation and continued every other day till day of sacrifice to monitor tumor 

growth in vivo. Prior to treatment, mice were randomized into treatment groups. 

Treatments of (I) vehicle (1xPBS containing 5% Tween and 1% DMSO, v/v); (ii) 1 mg/kg 

of PLX3397 (PLX), (III) free doxorubicin (DOX), or (IV) PAMAM G4SA-hydDOX conjugate 

(DDOX) in vehicle or a combination of (V) 1 mg/kg of DOX and 1 mg/kg of PLX or (VI) 1 

mg/kg of DDOX and 1 mg/kg of PLX was given either intravenously through retroorbital 

injection (90-140 µl) or through pulmonary administration (PA) by intratracheal intubation 

(20-30 µl). DDOX synthesis in characterization has been previously described.127 Mice 

were anesthetized by isoflurane exposure for 5-10 min before either administration was 

conducted. Briefly, for intratracheal intubation, anesthetized mice were laid on their back 

and hung by their incisors with thread on a SurgiSuite Surgical Platform (Mouse 

Endotracheal Intubation Kit, Kent Scientific, Torrington, CT, USA). The angle of the 
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mouse throat to the board was placed at 45°. A soft 20 G catheter was inserted into the 

mouse trachea guided by Trans-Tracheal illuminator containing fiber optic cable lighted 

by LED light. Once catheter was inserted into the trachea, the drug solution in vehicle 

was added to catheter, and the mice inhaled the solution into the lungs. Mice were kept 

under anesthesia during the process. All mice were returned to the cage and monitored 

after treatment to ensure no adverse effects from treatment. Treatments was given once 

on days 7, 9, 11 post tumor inoculation for a total of three treatments. The drugs used in 

combination were formulated in one solution and administered together. Mice were 

monitored daily for behavior, food intake, grooming, and body weight. Mice were 

euthanized on day 15 post tumor inoculation. On day the mice were euthanized, in vivo 

IVIS imaging was performed followed by ex vivo IVIS imaging of lungs – in same 

procedure as discussed in section 7.2.6 – and lungs weighed to assess overall lung tumor 

burden.  

6.2.9 Measurement of Macrophage Polarization by Flow Cytometry 

Flow cytometry was utilized to assess the macrophage populations and TAM 

phenotypes (M1/M2) in the lungs. Mouse lungs taken on Day 15 post tumor inoculation 

were diluted in 0.5 ml of Liberase TL Roche (Sigma)/RPMI medium solution and cut into 

pieces in a 15 mL falcon tube. The lungs were then incubated at 37°C for 25 min shaking. 

10 ml of Wash Buffer (RPMI medium + 10% FBS) was added to each tube and samples 

where than filtered using 100 µm filter followed by centrifugation at 350 x g for 5 minutes. 

Sample of extracted cells were then resuspended in 1-2 ml of Wash buffer where cell 

suspension was adjusted to concentration of 1-5 x 106 cells/ml. The cells are then 

centrifuged at 350xg for 3 min and resuspended in 40 µl of FcBlock (2.4G2 sup) with 40 
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µl of 2x antibody dilution and stain is added and incubated on ice for 20 min. 200 µl of 

FACS buffer (1L PBS+ 5g BSA+1ml 0.5M EDTA) was added and centrifuged again at 

350 x g for 3 min, then resuspend the cells in 80-200 µl of FACS buffer and run in samples 

through flow cytometer (The BD LSRFortessa-X20™). The antibody stains included 

CD11b (clone M1/70, eBioscienceTM), F4/80 (clone BM8, BioLegend®), MHC II (clone 

M5/114.15.2, TONBO Biosciences), and CD206 (clone MR5D3, AbD Serotec).  

6.2.10 Statistical Analysis.   

All data is presented as a mean ± standard deviation. One-way or Two-way 

analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test was 

performed utilizing GraphPad Prism 7.00 software.  Means were considered statistically 

significant if p < 0.05.  

6.3 Results 

6.3.1 Synthesis and Characterization of G4SA-hyd-DOX (DDOX) 

 The formation of DOX conjugated by carboxyl-terminated PAMAM dendrimer by 

linkage through a hydrazine linker to form G4SA-hyd-DOX (DDOX) was fully described in 

detail, previously.77 The synthetic scheme, 1H NMR, and MALDI-TOF characterization 

can be found in Appendix D – Scheme D1, Figure D1. Each NMR and MALDI-TOF for 

each step in the synthesis is summarized here.  

G4SA-TBC: 1HNMR (DMSO-d6, 400MHz, ppm):  δ 9.52 (s, 32.30H, -NHBoc in 

TBC), 8.67 (s, 29.58H, -NHCO- in TBC), 7.89-7.70 (m, 156.84H, -NHCO- in G4COOH), 

3.06 (m, 372.38H, -CONHCH2- (He) in G4COOH), 2.63-2.56 (m, 328.45H, -NCH2- (Hd) 

and -COCH2CH2CO (Hjr3) in G4COOH), 2.41 (m, 126.38H, -CH2N- (Hb,c) in G4COOH), 

2.29 (m, 150.53H, -CH2CH2CONHNH- (succinic methylene, Hjr2) in G4COOH), 2.18 (m, 
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248.00H, -CH2CO- (Ha) in G4COOH), 1.36 (m, 305.54H, -(CH3)3 in TBC). MALDI-TOF 

m/z (Da): 20531.79.  

G4SA-hyd: 1HNMR (DMSO-d6, 400MHz, ppm): δ 9.02 (s, 19.06H, NH2NHCO- in 

hydrazide), 8.03 (m, 175.56H, -NHCO- in G4COOH), 3.05 (m, 258.24H,  -CONHCH2- (He) 

in G4COOH), 2.620 (m, 188.96H, -NCH2- (Hd) and -COCH2CH2CO- (Hjr3) in G4COOH), 

2.41 (m, 87.18H, CH2N- (Hb,c) in G4COOH), 2.23 (m, 151.22H, -CH2CONHNH2 (succinic 

methylene (Hjr2) in G4COOH), 2.18 (m, 248.00H, -CH2CO- (Ha) in G4COOH). MALDI-

TOF m/z (Da): 17780.33.  

G4SA-hyd-DOX (DDOX): 1HNMR (DMSO-d6, 400MHz, ppm): δ 9.02 (s, 20.41H, 

NH2NHCO- in hydrazide), 8.05 (m, 167.13H, -NHCO- and Ar-H in G4COOH and DOX), 

5.26 (s, 11.99H, -CH- in DOX), 4.89 (d, 12.72H, -CH- in DOX), 4.570 (m, 24.72H, -CH2OH 

in DOX), 4.17 (s, 11.02H, -CH- in DOX), 3.94 (s, 35.23H, -OCH3 in DOX), 3.05 (m, 

255.54H,  -CONHCH2- (He) in G4COOH), 2.620 (m, 217.26H, -NCH2- (Hd) and -

COCH2CH2CO- (Hjr3) in G4COOH), 2.41 (m, 109.82H, CH2N- (Hb,c) in G4COOH), 2.29 

(m, 152.93H, -CH2CONHNH2 (succinic methylene (Hjr1, jr2) in G4COOH), 2.18 (m, 

248.00H, -CH2CO- (Ha) in G4COOH), 1.86 and 1.65 (d, 23.96H, -CH2- in DOX), 1.12 (s, 

36.10H, -CH3 in DOX). MALDI-TOF m/z (Da): 23860.59. The resulting DOX loading in 

the DDOX was as 22% w/w, conjugation of on average 11 DOX per dendrimer. 

6.3.2 Transformation of 4T1 Cells to Express tdTomato Fluorescence and 

Luciferase Bioluminescence  

 4T1 murine mammary carcinoma cells (animal model for stage IV human breast 

cancer) were transformed to contain tdTomato fluorescence to track cells via flow 

cytometry and luciferase bioluminescence to track tumor cells in vivo using a lentivirus 
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that contained puromycin resistance. Firstly, a puromycin kill curve (Figure D2) was 

conducted to find the minimum concentration to kill all 4T1 cells that would not contain 

puromycin resistance (4T1-WT). It was found that a minimum of 4 µg/ml was required to 

kill all 4T1-WT cells (Figure D2). This allows for selection of cells only containing lentivirus 

to be cultured and maintained over various subcultures of transformed cell line. The 4T1-

WT cell line was then transformed with lentivirus and sorted by cell sorting using tdTomato 

fluorescent expression as successful integration of lentivirus into cells. The cells were 

therefore, renamed as follows: 4T1-luc-tdTomato. Successful selection and high 

expression of lentivirus in cells was checked and maintained using tdTomato expression 

measured by flow cytometry (Figure 6.1). Figure 6.1 demonstrates the difference in 

fluorescent expression of 4T1-WT and 4T1-luc-tdTomato using A) dot plots and B) 

histogram plots to demonstrate a good expression and good separation of the two 

populations of cells. This allows for distinction of cell expressing fluorescence from those 

that are not expressing the tdTomato fluorescence, demonstrating the 4T1-luc-tdTomato 

cell having 99% expression of tdTomato fluorescence. The tdTomato expression was 

checked and maintained throughout experiment and checked using flow cytometry with 

4T1-luc-tdTomato cells maintaining tdTomato expression at 97% or above.  
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6.3.3 In Vitro Bioluminescence Kinetics Assay of 4T1-luc-tdTomato cells 

 The bioluminescence from firefly luciferase was also demonstrated in vitro by 

running cells through in vitro bioluminescence kinetics assay. Results from 4T1-luc-

tdTomato cells seeded at densities 250k, 125k, 62.5k, 31.25k and 15.265k were 

evaluated over time for bioluminescent expression after addition of d-luciferin to cells 

(Figure 6.2). Figure 6.2A is a representative IVIS image of total flux signal given from the 

A 

B 

Figure 6.1. Flow cytometry results of 4T1-luc-tdTomato cells after puromycin selection 

and sorting twice from cell sorter. A) Dot plots and B) histogram plots of wild-type 4T1 

(green) and 4T1-luc-tdTomato cells (blue) distinguish a distinct cell population based 

on tdTomato fluorescence.   
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cells, and the kinetics (Figure 6.2B) at different cell densities was plotted. 

  

The presence of signal indicated bioluminescent and presence of firefly luciferase was 

incorporated into the 4T1-luc-tdTomato cells. Also, the kinetics reveals that the 

bioluminescent signal at every cell density increases till around 10 min, in which it 

plateaus till 20 min. After 20 min, the bioluminescent signal begins to decline at every cell 

density tested. A 250k cell density was chosen to match the maximum number of cells 

used for tail vein (TV) injection into BALB/C mice.  The results also provide for a time 

window in which in vivo bioluminescence needs to be performed to evaluate tumor burden 

at peak bioluminescence levels. 

6.3.4 Evaluation of 4T1-luc-tdTom Metastatic Growth to the Lungs in Female 

BALB/C mice 

 An evaluation of tumor growth rate of lung metastases established by tail vein (TV) 

injection of 4T1-luc-tdTomato cells was performed. Initially, 100k cells were injected in TV 

of female BALB/C mice. In vivo IVIS images of the dorsal and ventral side of mice from 

Figure 6.2. In vitro kinetics assay of 4T1-luc-tdTomato cells. A) IVIS images of cells 

seeded in 96-well plate (cell numbers listed – max of 250,000 cells/well) and exposed 

to d-lucifiern, each repeated in triplicate; B) plot of kinetics of bioluminescent signal 

(total flux) over time at different cell densities. 
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Day 5 to Day 18 after TV injection were imaged and the total (sum) flux was evaluated 

(Figure 6.3). The total flux between days was evaluated (comparison between total flux 

on Day 5 vs 8, Day 8 vs, Day 11, Day 11 vs Day 14, and Day 14 vs Day 18) to determine 

between which days the largest increase tumor growth was seen. The largest increase in 

total flux was seen between Day 8 and 11 for all mice, with an average increase in flux 

by 11 ± 6 times in the total flux  seen on Day 11 as compared to Day 8 for the three mice 

evaluated. Other days saw a total increase in total flux signal by 5.0 ± 1.2 times from Day 

5 to Day 8, 7 ± 3 times from Day 11 to Day 14, and 4 ± 2 times from Day 14 to Day 18.  

 

Figure 6.3. Preliminary tumor growth experiment. A) IVIS images of mice from day 5 

go day 18 after TV injection of 100k 4T1-luc-tdTomato cells. B) Measurement of total 

flux from IVIS images by combined signal from the dorsal and ventral side of each 

mouse focused in the lung region area.  
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 To evaluate the establishment of lung metastases more directly, a second group 

of female BALB/C mice were injected via TV with 250k 4T1-luc-tdTomato cells, in which 

a mouse was sacrificed on different days and lungs were imaged directly with IVIS. The 

results of in vivo IVIS imaging and IVIS imaging of the lungs was compared and evaluated 

over 12 days post TV injection (Figure 6.4). Based on these results, the total flux over 

various days demonstrated the same trend for in vivo IVIS images and ex vivo lung IVIS 

images. Both demonstrated the highest total flux increase between day 9 and day 12 post 

TV injection of cells (Figure 6.4) with an increase in 5.5 times the signal of total flux for in 

vivo images and 9.3 times for ex vivo lungs from total flux measured on Day 12 compared 

to that of Day 9.  

 

 

Figure 6.4. Preliminary tumor growth experiment from TV injection of 250k 4T1-luc-

tdTomato cells. A) in vivo IVIS images of dorsal and ventral side of mouse over 12 days 

post TV injection of tumor cells. B) IVIS images of lungs taken on specific days after 

TV injection. The number below lung refers to mouse number. C) Total flux (flux of 

ventral and dorsal images combined focused on lung region) from in vivo IVIS images 

of mice over various days post TV injection. D) Total flux taken from lungs on each day. 
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6.3.5 In vivo efficacy of PLX3397 (PLX) for the treatment of Lung Metastases  

The efficacy of treatment of breast cancer lung metastases established by 4T1-

luc-dtTomato cells was evaluated for DOX, PLX, DDOX and combination treatments. The 

first experimental set was used to compare vehicle (as negative control) with pulmonary 

administration (PA) of DOX, PLX and the combination of DOX with PLX at a dose of 1 

mg/kg with combination at a dose of 1 mg/kg for each drug. A second experimental set 

evaluated the PA of DDOX, DDOX+PLX, and IV administration of PLX alone. The overall 

treatment strategy can be seen on Figure 6.5. 

 

 

After 3 treatments, all mice were sacrificed (day 15 post tumor inoculation), and the lung 

tissue was directly evaluated (Figure 6.6 and 6.7). The total flux of lungs for both groups 

as measured by IVIS of the lung tissues demonstrated no significant difference in overall 

Figure 6.5. The in vivo treatment strategy plan in treatment of lung metastases induced 

by 4T1-luc-tdTomato cells. 250k cells were injected TV in female BALB/C mice. 

Monitoring of tumor growth began by in vivo IVIS imaging of mice on Day 5 post tumor 

inoculation and continued for every other day till Day 15. Treatment was given three 

times on days 7, 9, and 11 post-tumor implantation. Mice were sacrificed on Day 15. 
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tumor burden between any of the groups as seen in p values calculated after One-way 

ANOVA analysis followed by Tukey’s Multiple Comparison Test (Figure 6.6).  

 

A trend can be noted, however, in which the overall tumor burden measured by 

total flux of tumor cells was least in PLX groups when delivered PA as well as IV, 

Figure 6.6. Evaluation of lung tumor burden by ex vivo imaging of lungs using IVIS. 

A) & D) Ex vivo lung images of treatment groups. B & E) corresponding total flux of 

lungs by combining flux of lungs imaged on two sides for each group as evaluated 

from IVIS images. C & F: Corresponding p-values comparing total flux of groups after 

running One-Way ANOVA analysis followed by Tukey’s Multiple Comparison Test. All 

drugs were given via pulmonary route except PLX# group seen in D) in which PLX was 

delivered IV route.  
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indicating potential of the macrophage immunotherapy treatment. Surprisingly, DOX 

alone did not help decrease tumor burden, with results similar to the control group 

(vehicle). The DOX+PLX group demonstrated a lower tumor burden on lungs, but not as 

effective as PLX alone, indicating that DOX is actually negating any positive effects of 

PLX. It is noted that DOX not only does not provide for an effective treatment, but it is 

also very toxic. Animals treated with DOX alone or in combination with PLX had a 

significant decrease in body weight (Figure D3) as well as increase in overall lung weight 

(Figure 6.7). DDOX and combination of DDOX+PLX delivered via the pulmonary route 

demonstrated overall tumor burden to be almost similar with PLX delivered IV, which 

showed slightly lower tumor burden (Figure 6.6). The change in body weight (Figure D3) 

and overall lung weights (Figure 6.7) for these groups showed no significant differences.  

To provide a more representative version of the in vivo data when measuring total 

flux of each mouse, the % tumor growth rate was calculated by normalization of total flux 

signal from Day 7 post tumor inoculation (1st treatment day) to be comprised of 100% 

tumor growth (Figure D3). Since total flux for each mouse varied, a way to try to compare 

rate of tumor growth was to normalize total flux signal. The normalization at 100% tumor 

growth rate occurred on Day 7 post tumor inoculation since this corresponded to the first 

day of treatment. The % tumor growth rate calculated by in vivo total flux (combined dorsal 

and ventral images) revealed similar trends (Figure D4, Table D1) to the results discussed 

above. However, for combination DOX+PLX group, the overall % tumor growth rate was 

shown to be the highest of all groups, which is not demonstrated when imaging of lungs 

only, and was statistically different from PLX group on Day 15 (Figure D4). This may be 

due to total flux captured in vivo was also capturing metastasis to other sites besides 



www.manaraa.com

160 
 

 
 

lungs, such as lymph nodes and bone, in upper portion of mouse. Therefore, if DOX+PLX 

demonstrated lower results in lungs, it may not correspond to effective treatment to other 

sites.  However, no group proved to have any significant difference from vehicle, our 

negative control. Trends for DDOX, DDOX+PLX, and PLX (given IV) in % tumor growth 

rate (Figure D4, Table D1) proved to show similar trends as the tumor burden measured 

by the lungs (Figure 6.6). The DDOX+PLX group showed highest % tumor growth by Day 

15 as compared to DOX alone, and which PLX demonstrated the lowest % tumor growth 

by day 15. Overall, for both experimental groups, PLX delivered by PA and by IV 

demonstrated lowest tumor burden by Day 15.  

 

 

 

Figure 6.7. Average lung weight for corresponding group with A) representing first 

experimental group in which all drugs were given via pulmonary route and B) the 

second experimental group in which DDOX and DDOX+PLX were given pulmonary 

route and PLX# was given IV route, (*p<0.05, **** p<0.0001, n.s.d. = not statistically 

different). 



www.manaraa.com

161 
 

 
 

6.3.6 Measurement of Macrophage Polarization by Flow Cytometry 

The macrophage population and macrophage polarization within the lungs of mice 

from Day 15 (n=3) post-tumor implantation was assessed by flow cytometry (Figure 6.8).  

 

In these exploratory experiments, total TAMs and M1 and M2 population was measured 

during the first set of experiments where all drugs were delivered via the pulmonary route. 

The overall number of macrophages found in the lung samples of PLX treated animals 

was lower than the vehicle (negative control). On the other hand, total macrophage 

Figure 6.8. Macrophage tracking by flow cytometry. A) % total of macrophages 

compared to all cells in lung sample. B) % of Cells considered M1 TAM phenotype. 

C) % of cells considered that of M2 TAM phenotype.    
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population in the lungs for DOX and DOX+PLX treatment groups resulted in an overall 

increase in number of macrophages (Figure 6.8A).  The percentage of cells considered 

M1 TAM phenotype increased and M2 TAM phenotype decreased for PLX group when 

compared to the vehicle (Figure 6.8). The DOX group had similar % of cells to be of M1 

phenotype and lower % of M2 cells as compared to control, while the combination group 

revealed a lowering of both M1 and M2 TAM percentages when compared to the vehicle.  

6.4 Discussion 

 Metastatic relapse is typically accompanied by MDR, which is the main cause of 

cancer death for most cancer patients6, 7, 23. Breast cancer remains the leading type of 

cancer in terms of new cases for women in the USA, and the metastatic form of breast 

cancer most commonly metastasizes to the lung, along with liver and bone, and lymph 

nodes.2, 7, 8 The metastatic form of breast cancer remains the leading cause of death in 

these patients and where current clinical intervention proves unbeneficial.9, 10 Not 

including only breast cancer, but secondary lung tumors (tumors that metastasize to the 

lung) can be found in 30-55% of all cancer patients.6 Therefore, a push for alternative 

treatments including immunotherapy have given a new therapeutic strategy to treat 

patients not only with primary lung cancers, but also secondary tumors that metastasize 

to the lungs. The small molecule immune modulator PLX is an attractive therapeutic agent 

as it has shown great efficacy as a monotherapy and combination therapy and is currently 

being studied in many current clinical trials.20, 82 In this investigation, we seek to evaluate 

the potential of locally delivered PLX to the lung tissue as a strategy to treat primarily and 

secondary lung cancers, and the impact of combination therapies with cytoreductive 

agents (in this case DOX). DOX itself is used as one of the main chemotherapies in the 
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late stages of advanced breast cancer,71 making it a relevant choice for this metastatic 

breast cancer model used in this study. A more direct delivery route for the treatment of 

primary and secondary lung tumors is an attractive strategy. Advantages of the pulmonary 

route include the fact that it is a non-invasive route of delivery to lungs, it has higher lung 

selectivity to direct more drug to target lung tumor sites, and lower systemic exposure to 

reduce off-target effects.72, 73 It can also serve as a non-invasive systemic delivery route 

by lungs having a large alveolar surface area and thin epithelial air-blood barrier allowing 

for rapid absorption of molecules from the alveolar space to the blood stream.73 This is 

attractive for metastatic models which some circulating cancerous cells can also be 

targeted, as for example the lymph nodes, the first site of metastases from lung cancer. 

Reducing systemic toxicity is critical not only to cytoreductive agents, but also to 

immunotherapies, including CSF1Ris, that have also demonstrated associated toxicities 

and a direct route of administration to the targeted tissue may help overcome challenges 

that may prevent their use alone or in combination. The combination of pulmonary route, 

chemotherapy, and immunotherapy, and nanotechnology for controlled and targeted 

delivery of the cytoreductive agents (nanochemoimmunotherapy) was tested to assess 

its potential for the treatment of primary and secondary lung tumors.  

In this case, a breast cancer metastatic in vivo needed to be established. The 

establishment of a transformed 4T1 cell line (murine mammary adenocarcinoma), a 

mouse cell model for stage IV human breast cancer, was the first step in this study.  It 

was transformed to incorporate fluorescent and bioluminescent properties by 

incorporation of a lentiviral vector containing tdTomato and firefly luciferase. The 

tdTomato fluorescent expression allowed for the tracking of the tumor cells via fluorescent 
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property utilizing flow cytometry (Figure 6.1). The bioluminescence from the luciferase 

allowed for visualization and monitoring of tumor growth rate in vivo and directly of lung 

tissues ex vivo with the use of IVIS imaging. These 4T1 cells were referred to as 4T1-luc-

tdTomato. The puromycin resistance was also added to the lentivirus to allow for selective 

selection of 4T1 cells that only contain vector, allowing for subculturing of the cells without 

loss of expression. The success of such an established cell line was monitored by both 

checking of fluorescent signal (Figure 6.1) and bioluminescent signal (Figure 6.2) and it 

is being continuously monitored to assure quality.  

Once the 4T1-luc-tdTomato cell line was established, a tumor growth rate study 

was conducted to evaluate the effectiveness of tail vein (TV) injection of cells to establish 

tumors in the lungs. This was conducted in female BALB/C mice, as these tumor cells are 

syngeneic to this strain of mouse. TV injection of 4T1 cells into BALB/C mice was 

evaluated previously, and compared to 4T1-luc2 cells implanted subcutaneously, 

orthotopically, and via TV.308 It was concluded that lung metastasis from breast cancer 

when established by orthotopic injection or TV injection did not show any significant 

differences in gene profiles, and they were thus considered genetically similar. 308 This 

conclusion confirms TV injection of 4T1 cells to form breast cancer lung metastasis is a 

relevant in vivo model of secondary lung cancer.  

Based on in vivo IVIS images (Figure 6.3) and ex vivo images of lungs (Figure 6.4) 

as a function of days post tumor implantation, it was demonstrated that around one week 

is required for the tumor cells to establish in the lungs and to begin to expand 

exponentially. A good correlation between the in vivo and ex vivo images was also seen. 

These results, therefore, also established that the tumor growth could be monitored in 
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vivo as the study was being conducted. The establishment of which day to start treatment 

was also determined based on the tumor growth profile.  Day 7 post tumor implantation 

was selected based on establishment of tumor by this day This is different from studies 

starting treatment at day 0. Therefore, our work more closely mimics what typically 

happens in the clinic for tumors when metastases had already ensued. 

The pulmonary delivery of PLX, DOX, DOX+PLX, DDOX, and DOX+PLX was 

evaluated for treatment of lung metastasis established by 4T1-luc-tdTomato cells in 

female BALB/C mice as direct pulmonary delivery to the lungs provides a relevant route 

to treat such metastasis as discussed above. However, IV administration of PLX was also 

tested as control – PLX is typically dosed orally.  The first set of comparisons were of 

pulmonary delivered DOX, PLX, DOX+PLX, as compared to the vehicle, the negative 

control (no treatment). The second set of comparisons was conducted on an experimental 

group in which DDOX, DDOX+PLX groups administered via the pulmonary route and a 

third group where PLX was administered the IV route. 

The results seen from evaluating tumor burden on lungs via total flux from tumor 

cells ex vivo (Figure 6.6) reveals that there was no statistical significant difference within 

the various groups tested. Therefore, none of the treatments demonstrated efficacy by 

Day 15 post tumor inoculation. These exploratory experiments reveal few trends and 

allowed us to draw some important conclusions, however, that may guide the next set of 

experiments.  

Another way to look at tumor burden is to measure the % growth relative to the last 

day the tumor was monitored before treatment. This strategy is also important as it takes 

into account natural variability among the animals within a group and between groups as 
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this particular model is susceptible to significantly different rates of growth compare to for 

example xerograph models implanted subcutaneously.   

The % tumor growth evaluated from in vivo IVIS images is shown in Figure D3 and 

p values calculated on Day 15 in Table D1. Their results show somewhat similar trends 

as with the ex vivo imaging of the lungs. The DOX and DOX+PLX treatments upon PA 

revealed a higher tumor growth rate compared to vehicle., indicating not only lack of 

efficacy from the cytoreductive therapy, but an unwanted effect that promotes tumor 

growth.  The DOX+PLX group showed the highest % tumor growth rate, which differs 

from the total flux seen in the lungs ex vivo.  These results are statistically different 

(greater rate of growth) from the PLX group by Day 15 post tumor inoculation. 

Interestingly DDOX+PLX also demonstrated the highest % tumor growth by Day 

15 (although no statistical differences noted). Therefore, the combination of PLX and DOX 

or DDOX did not provide a synergistic action, and actually seemed to provide the opposite 

effect on tumor burden (% tumor growth). The combination of these two drugs given 

together proved to be a poor combination.  

The main trend seen with all the groups is that the delivery of PLX alone either by 

pulmonary delivery or by IV delivery demonstrated the most effective decrease in tumor 

burden. This demonstrates that PLX alone could potentially act as a monotherapy for 

treatment of breast cancer metastasis or be used in combination with other therapies. 

Another major aspect to be noticed is that DOX at 1 mg/kg dose, when delivered 

the pulmonary route, proved to be highly toxic to the mice with this tumor model, in both 

DOX treatment group and DOX+PLX treatment group. Toxicity was observed by the 

decrease in average body weight of the mice (Figure D3) starting after treatment, as well 
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as increase in lung weight in those groups (Figure 6.7) to a large extent due to 

inflammation and not overall tumor burden, which remained statistically insignificant 

(Figure 6.6). This was somewhat surprising, given that the same dose was used 

previously in B16F10 (melanoma in C57Bl/6) induced lung tumor model without any 

toxicity and with significant reduction in tumor burden.77 However, changes in drug 

formulation and animal model may have contributed to this result.  

Therefore, an alternative DOX treatment was decided to be tested to ascertain if 

tumor burden and toxicity of DOX could be reduced/avoided. DDOX was chosen, as our 

group had demonstrated DDOX to be more effective than free DOX in a previous study 

in a B16F10-induced lung tumors.77 DDOX also had the lowest IC50 value (0.96 µM) in 

vitro (Table D2) when tested against other DOX formulations (Figure D5). The DDOX 

formulation did prove to decrease the toxicity of DOX at same free DOX equivalent 

concentration (1 mg/kg) – as seen with the lack of any significant drop in mouse weight 

(Figure D2) and no inflammation in lungs or increase in lung weight (Figure 6.7). However, 

despite these benefits, it still did not prove to be better than PLX alone.  

Overall PLX alone when given through pulmonary route or through IV route has 

proven here to have the best chance of treatment for lung metastasis from breast cancer. 

It is worth noticing that the expected dose of PLX expected to reach the lungs is very 

small upon IV administration. Given its efficacy, we expect to be able to reduce the total 

dose of PLX necessary upon PA to achieve same level of efficacy at IV. Upon finding the 

right combination of PLX and cytoreductive therapy, lower doses of the combination may 

lead to efficacy and reduced overall toxicity. 
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Many reports reveal that no dose limiting toxicities were found in phase 1 and 2 

clinical studies of CSF1R inhibitors,20 which correlates with this investigation. However, 

some dose limiting toxicities may occur at maximum tolerated dose and should be noted. 

One Phase 3 clinical trial using PLX3397 had 2 of 121 patients experience non-fatal 

serious liver toxicity, which led to suspension of the trial (NCT02371369).20 If this was due 

to inhibition of other receptor kinases in liver remains unclear.20 Also, whether this toxicity 

would be seen if delivered via other routes (IV and PA) compared to oral delivery is also 

unknown. But if liver toxicity could be avoided by alternative route of delivery, this would 

be an incentive to deliver PLX via alternative routes. 

In terms of mechanism of action of PLX, some preliminary results were performed 

with the help of the Bos group at VCU (tagging of lung tumor cell suspension provided 

and data analysis). PLX treatment was seen to induced macrophage polarization from 

M2 to M1 as seen in flow cytometry results (Figure 7.8). An overall decrease in 

macrophage population was seen compared to vehicle control, with an increase in M1 

TAMs and decrease in M2 TAMs demonstrating a 3-fold overall increase in M1/M2 ratio 

(from ca. 4 to ca. 12). Therefore, a decrease in overall TAMs as well as repolarization did 

occur with PLX treatment, an indication that this CSF1Ri is affecting overall TAMs found 

within the lungs on this secondary model.  

 Overall efficacy was not determined from this study as no statistical differences 

were seen in treatment groups. However, based on these results, PLX alone has the best 

indication to expand on these preliminary results, as combination therapies and different 

treatment regiments are evaluated. For example, a longer study may prove overall 

efficacy of PLX alone in both delivery routes (PA and IV) and is currently being studied in 
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the group. Also, the dosing schedule for PLX and maximum tolerated dose could also be 

explored to enhance overall efficacy. An overall more in-depth study of macrophage 

population and interaction with other immune cell populations (T effector and T regulatory 

cells) is desired to provide more insight into the role of PLX in modulation of the immune 

system. PLX also downregulates CSF1R by inhibition of phosphorylation of kinase 

domain on the receptor. This could be further elucidated the mechanism of tumor 

inhibition when looking at amount of phosphorylation seen in CSF1R on TAMs to 

understand the molecular mechanism of PLX.  

 PLX in combination with other therapies could also enhance efficacy.  The 

combination of PLX and other CSF1R inhibitors with immune checkpoint therapies has 

the highest number of clinical trials to date.20 Immune-checkpoint therapies have 

revolutionized immune therapy for cancer treatment. A combination of CSF1Ri and T-

cell-enhancing therapies (PD1/PDL1 inhibitors) have shown synergistic action and 

proven to be effective when PD1/PDL1 inhibitors were shown limited efficacy on its 

own.309  This combination has led to many clinical trials in Phase 1/2 stages to determine 

dosing, safety, and clinical efficacy, with results yet to be remaining.20 Therefore, this 

combination of PLX with PD1/PDL1 inhibitor could prove to be a synergistic combination 

and should be tested in breast cancer metastasis model established here.  

6.5 Conclusion 

 Treatment of primary and secondary lung tumors remain a significant clinical 

challenge in which current standard of care with cytoreductive therapies offer relatively 

small clinical benefit. This study focused on the treatment of secondary lung tumors 

metastasized from breast cancer in order to evaluate a new treatment strategy for lung 
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metastases that includes (i) immunotherapy with a macrophage reductive and 

repolarization agent (PLX); (ii) combination of cytoreductive therapy (DOX) and 

immunotherapy (immunochemotherapy); and (iii) use of dendrimer nanocarriers for 

improved efficacy and reduced toxicity of cytoreductive agent in combination with CSF1Ri 

(nanochemoimmunotherapy).  

Here pulmonary delivery of DOX, PLX, PAMAM G4SA-hyd-DOX (DDOX) and 

combination of PLX with DOX or DDOX formulations was tested via pulmonary delivery 

on an in vivo model of 4T1-induced secondary lung tumors in female BALB/C mice.  It 

was demonstrated that of all treatment groups, PLX alone proved to show the most 

promising strategy by showing the lowest tumor burden on lungs when PLX was delivered 

PA or IV, and no dose-limiting side effects. Surprisingly, free DOX alone or in combination 

with CSF1Ri showed significant toxicity and no ability to reduce tumor burden. 

PLX seems to work by leading to an overall decrease in TAMs and TAM 

repolarization as demonstrated via flow cytometry. However, efficacy and most effective 

dosing schedule as well as total dose remains to be further investigated. Also, a 

combination with immune-checkpoint therapies has also a potential for a synergistic 

combination treatment strategy, which was not seen with DOX and PLX. Therefore, 

immunotherapy with PLX remains a promising therapy for treatment of metastatic breast 

cancer to the lungs.  
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CHAPTER 7 – CONCLUSIONS AND FUTURE DIRECTIONS 

 Lung cancer remains the number one cause of cancer death in the United States.2 

Approximately 57% of cases are diagnosed at the metastatic stage, with a 4.7% five-year 

survival rate.3  Treatment success is radically different in other types of cancers such as 

prostate cancer where rate of incidence has fallen 10% annually from 2010-2014 and has 

a 5-year survival rate of 99%.2, 3 Not only lung cancer, but secondary lung tumors found 

in 30-55% of all cancer patients .6 Most metastatic tumors cannot be cured with existing 

therapies.12 Chemoresistance (multi drug resistance – MDR) that develops intrinsically or 

acquired becomes the final leading cause of death in these patients.6, 9, 11, 22 MDR 

develops from a variety of changes that occur within tumor cells and the complex 

characteristics of the tumor microenvironment (TME). Several mechanisms of resistance 

are utilized by tumors concurrently or consecutively, thus making treatment effectiveness 

difficult.24 Current therapies often have slowed tumor progression or alleviated symptoms, 

but rarely lead to a cure.12 Immunotherapy, including the use of checkpoint inhibitors has 

shown promise in which alternative therapies have not proven beneficial. However, only 

a relatively small fraction of tumor types and of patients have been benefited so far.20, 21 

Immunotherapies are unfortunately not devoid of toxicity, and this is an important issue 

that is becoming more obvious and relevant as the number of new immunotherapy-based 

regimens are rapidly growin.17 Establishing new treatments, alone or in combination, that 

can (i) increase the rate of survival of lung cancer patients at early stages or at later 

stages when metastatic relapse and MDR may have developed, and (ii) reduce intrinsic 

toxicity associated with the various treatments is, therefore, of great potential relevance 

in pulmonary oncology. 
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Here we described alternative treatment modalities with pre-clinical studies that 

suggest their potential to help address the onset of MDR and potentially prolong the rate 

of survival of patients with primary and secondary lung tumors. We use a combination of 

local lung targeting (high payload to relevant site with reduced systemic toxicity), 

nanocarriers (modulation of the interaction with the physiological environment), 

intracellular/organelles targeting (repurposing cytoreductive therapies), siRNA as 

therapeutic agent (selective target apoptotic pathways), and macrophage repolarization 

immunotherapy (use TME to support other therapies) are reported.  

 The main conclusions from these studies and suggested overall future directions 

are discussed here: 

(i) We were able to develop mitochondrial-targeted dendrimer nanocarriers 

(DNCs) as a platform for the repurposing of chemotherapeutics with potential applicability 

in the treatment of MDR in primary and secondary lung tumors. Mitochondria have 

become attractive targets for cancer therapies since they play a crucial role in cellular 

homeostasis and intrinsic apoptosis and have altered functions in tumors.48, 50 TPP, a 

common mitochondrial targeting agent, has been utilized to target small molecules54-57, 92 

as well as various nanocarriers 87-89 for delivery of therapeutics and treatment tumors and 

MDR-associated tumors. We are the first group to directly address TPP density and effect 

of PEG linker between TPP (PEGTPP) on cellular internalization, toxicity, and 

mitochondrial targeting of dendrimers, including PAMAM. We demonstrated this as a 

potential delivery platform for therapeutics to address issues with MDR.  

  Here, we were able to determine that TPP attachment to G4NH2 PAMAM 

dendrimers lead to an enhancement of mitochondrial targeting of these dendrimers. TPP 
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was either directly conjugated (G4NH2-TPP) or through PEG linker (G4NH2-PEGTPP). 

PEG was added as a flexible linker between G4NH2 dendrimer as PEG has desirable 

characteristics including increasing solubility, biocompatibility, enhanced 

pharmacokinetics and modulation of interaction between the dendrimer and the 

physiological environment.116, 122, 241 Both strategies demonstrated significant 

mitochondrial targeting as compared with G4NH2 without TPP. G4NH2-TPP groups 

demonstrated an increase in targeting with increase in density, while G4NH2-PEGTPP 

demonstrated significant mitochondrial targeting without being affected by degree of 

PEGylation present. Modulation in overall toxicity and internalization was seen as TPP 

density varied, with an increase in in vitro toxicity and cellular internalization in G4NH2-

TPP with increasing TPP-density, whereas G4NH2-PEGTPP has decreasing in vitro 

toxicity when PEGTPP density is above 5 per dendrimer (>8% coverage). Therefore, 

modulation of the properties of G4NH2 dendrimer can be achieved with the presence of 

PEG without affecting the overall mitochondrial targeting ability. It was concluded, 

therefore, that both direct and indirect conjugation, separately or in combination, are 

potential strategies for the delivery of therapeutics to the mitochondria, which can be 

utilized to address MDR and treatment of primary and secondary lung tumors.  

 More work is required to test overall efficacy of TPP-dendrimer targeted strategy. 

G4NH2-TPP and G4NH2-PEGTPP dendrimers can be further modified upon conjugation 

of a chemotherapeutic agent directly to the dendrimer One chemotherapeutic that has 

shown efficacy when targeting mitochondria is DOX.54-57, 94, 177, 182The Complex I in the 

electron transport chain in mitochondria can modify DOX into a more reactive 

semiquinone radical, resulting in increased ROS production and higher oxidative 
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stress.178, 179 DOX may also inhibit Complex I and II, increasing ROS production, which 

can ultimately lead to induction of apoptosis.178, 179 The conjugation of DOX to a 

mitochondrial-targeted dendrimer nanocarrier or conjugation of DOX with TPP (DOXTPP) 

and then to dendrimer should be considered and tested in vitro and in vivo.54-57, 177 This 

may prove to be an effective strategy to address drug resistance, particularly when 

combined with pulmonary delivery. 

(ii) We developed siRNA/TPP-DNC complexes as a platform for pulmonary 

delivery of siRNAs with potential applicability in the treatment of MDR in primary and 

secondary lung cancer. siRNA delivery to the lungs can be utilized to address MDR by 

modulating genes overexpressed in tumors and assist in apoptosis induction when 

delivered alone or in combination with other treatments.58 However, efficient siRNA 

delivery to lung tumors has many challenges including physiological barriers and cellular 

internalization barriers. Here, we were able to demonstrate the enhancement of in vitro 

transfection ability of siRNA in lung alveolar cells by the use of dendrimer-TPP conjugates 

to form nanometer scale TPP-DNCs complexes with siRNA, and the successful aerosol 

formulations of those complexes in both pMDIs and DPIs. This provides an overall 

platform for local siRNA targeting to the lungs that can be utilized to help address MDR 

and treat primary and secondary lung tumors.  

The impact of TPP surface modification on G4NH2 dendrimers was evaluated for 

their interaction with siRNA and their overall gene knockdown ability in an in vitro model 

of the pulmonary epithelium at various TPP densities and varied N/P ratios (amount of 

dendrimer vs siRNA in the complex). The eGFP knockdown ability in eGFP-A549 cells of 

dendrimers was enhanced with the presence of TPP on the dendrimer surface with 
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G4NH2-12TPP, and at N/P 30 demonstrating the highest gene knockdown efficiency. 

Improvements with transfection ability was associated with looser complexation between 

the siRNA and G4NH2-TPP dendrimer and could be associated with other factors 

including mitochondrial targeting, heightened cellular internalization, and more effective 

endolysosomal escape. Micron-sized particles were engineered by G4NH2-12TPP-

dendriplexes being spray dried with mannitol. We demonstrated that such micron 

particles are conducive to deep lung deposition when formulated in pMDIs and DPIs. We 

have also shown these to be viable formulations in that siRNA maintained its biological 

activity during the preparation of the micron particles, formulation and delivery (in vitro 

model of the lung). Therefore, this strategy provides for a platform for efficient siRNA 

delivery to the lungs. 

Further work can help be performed to help elucidated the potential of this strategy 

in context of lung tumors and MDR by delivering siRNA that targets well-known genes 

that are overexpressed in lung tumors. In this context, the gene targets of most interest 

have been Bcl-2 and Survivin. Bcl-2 is a protein cell survival and cell death by prevention 

of intrinsic (mitochondrial-dependent) apoptosis in which it interacts with other Bcl-2 

family proteins on the outer mitochondrial membrane.204, 205 It has been implicated in MDR 

and associated with poor prognosis.22 Survivin is a member of the Inhibitor of Apoptosis 

Protein (IAP) family68, 206 and promotes cell survival by inhibiting caspases, proteins 

known to implement programmed cell death.66, 95, 206, 207 Survivin expression is not 

normally found in adult tissues, but has been expressed in high levels in NSCLC, and 

also shown unfavorable prognosis, increase recurrence rates, and tumor resistance in 

these instances.66, 206, 209 Therefore, the delivery of siRNA containing gene sequences 
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that target Bcl-2 or Survivin have great potential in addressing MDR in lung tumors, and 

should be tested utilizing the strategy we presented here in vitro and in vivo. This strategy 

can also be tested as a combination therapy, where gene targets and other treatment 

modalities (chemo- or immuno-therapies, for example) are used to elicit synergistic 

effects.  

(iii) We were able to synthesize dendrons with various surface chemistries and 

a cytoreductive molecule (DOX). Conjugation of these asymmetric dendrons has the 

potential to enhance therapeutic efficacy of the chemotherapeutic and in combination with 

local lung delivery be used in the treatment of MDR in primary and secondary lung 

cancers. As the complexity and versatility in dendrimer chemistry increases, so does the 

opportunities to use such versatile carriers in biomedical applications.39-41 Bis-MPA 

polyester dendrimers have been demonstrated to be highly biocompatibility and are also  

degraded under physiological conditions.38 They are thus highly desirable as drug 

delivery carriers. The multifunctionality of Bis-MPA asymmetric dendrimers have thus 

tremendous potential, but their chemistry remains highly complex. 45, 167  

 In this work, we were able to synthesize and characterize various surface 

modifications to N3-G5-OH polyester dendrons for the potential formation of asymmetric 

dendrimers containing DOX and varying surface chemistries unmodified neutral (-OH), -

COOH (anionic), -NH2 (cationic), hydrophilic (-PEG), and hydrophobic (-Lauryl) 

functionalities. All surface modifications were made via a liable ester bond. Overall, the 

various surface modifications represent different surface properties, which have 

implications in altering cellular internalization and trafficking pathways, and thus their 
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intracellular fate, as seen with other dendrimers,47 but with a highly controlled and 

asymmetric chemistry. 

 While dendrons have been prepared, due to the complexity of the synthesis, the 

preparation of the asymmetric dendrimers was not accomplished during this work and will 

be part of future work in our group. A potential strategy of DOX conjugation to an acet-

G5-GA dendron via a -GFLG- peptide linker has been proposed. The formation of GFLG-

DOX remains the limiting factor, and the synthesis of such will remain to be executed in 

the future. The synthesis and purification of asymmetric dendrimers form dendrons 

containing GFLG-DOX on one side and varying surface chemistries has also been tested 

and proposed. These strategies can be utilized to form final asymmetric dendrimers via 

click chemistry.  

 Once asymmetric dendrimer chemistry is completed, the testing in vitro and in vivo 

is recommended to be conducted. Cellular internalization and intracellular trafficking, and 

drug efficacy in vitro will be conducted to elucidate how asymmetric surface chemistries 

can affect cellular internalization mechanisms, and thus influence overall DOX efficacy. 

The delivery of such systems via PA route should be conducted in order to address how 

asymmetry and varying surface chemistries could affect overall drug efficacy. This can 

be compared to results of DOX directly conjugated to a polyester dendrimer to elucidate 

the effect of high asymmetry.  These nanocarriers should be also tested in MDR tumors 

to elucidate the impact of asymmetry. 

(iv) We were able to assess the impact locally delivered, TAM-targeting 

immunotherapy with potential applicability in the treatment of MDR in primary and 

secondary lung tumors. Metastatic tumors are associates with poor prognosis and drug 
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resistance, and remains the main cause of cancer death and challenge in pulmonary 

oncology.6, 7, 23 Modulation of TAMs by CSF1Ri have shown great promise in many 

current clinical trials.20, 82 In this investigation, we sought to determine the ability of a 

CSF1Ri (PLX) alone or in combination with a cytoreductive agent in its free form (DOX) 

or conjugated to PAMAM dendrimers (DDOX) to reduce the tumor burden in an in vivo 

model of secondary lung cancer (breast cancer lung metastases) upon PA administration. 

This works represents the first to test the delivery of PLX via pulmonary route as potential 

treatment secondary lung tumors and potential to address MDR. This is relevant as such 

therapies have potential associated toxicities, and local administration may help mitigate 

undesirable effects, and thus potentially allow studies with combination therapies as well 

(where those therapies may also have their own associated toxicity).  

 PA of DOX, PLX, DDOX and combination of PLX with DOX or DDOX formulations 

was tested in an in vivo model of 4T1-induced secondary lung tumors in female BALB/C 

mice. No treatment groups were able to demonstrate statistical significant differences 

form the control. However, trends for PLX alone indicated an overall decrease in tumor 

burden when delivered via PA, and incurring in no adverse effects, thus suggesting 

potential of the proposed strategy. Preliminary results also suggest that groups that 

received PLX treatment lead to an overall decrease in TAMs number and TAM 

repolarization towards a higher M1/M2 ratio.  

 Future work in related to such strategy is to explore different regimens of PLX and 

combination therapies. First, the overall efficacy of PLX alone via IV and PA should be 

determined by lengthening the overall study to measure survival in this tumor model. A 

more effective dosing schedule as well as dose-escalation studies could reveal increased 
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efficacy and determine if any adverse reactions with PLX can be reached, as well as the 

potential to reduce dose upon PA administration. The combination of TAM 

reduction/repolarization with immune-checkpoint therapies has also a potential as a 

synergistic combination treatment strategy.20 The solubility of PLX also remains a 

problem in which a complex formulation including DMSO and Tween are required to 

solubilize PLX. Therefore, new nanoformulations to increase overall solubility of PLX are 

greatly desired and should be studied in future work.  

In conclusion, this work and future work has represented potential treatment 

strategies to address MDR and for the treatment primary and secondary lung tumors. We 

have demonstrated mitochondrial targeting, pulmonary siRNA delivery, use of novel 

polyester asymmetric dendrimers, and pulmonary delivery of CSF1Ri as potential 

platforms for treatment of primary and secondary lung tumors as well as address issues 

concerning MDR. These strategies present varied alternative pathways that when used 

alone or combined can greatly affect outcome in patients with poor prognosis, and could 

in other context, be used to treat other alternative disease states in the lungs.  
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 3 

Supporting Information. The characterization of G4NH2-TPP and G4NH2-PEGTPP 

conjugates as described by 1H NMR (Figure A1).  The structure with associated bonds 

as well as the spectra is given for each conjugate.   
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A 

B 

Figure A1. 1H NMR spectra of the A) G4NH2-FITC-TPP and B) G4NH2-FITC-
PEGTPP dendrimer conjugates in D2O at 400 MHz on Aligent Mercury Spectrometer.  
The chemical structures are shown above with the corresponding peak shifts. 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 4 

 

Table B1. Deposition of dendriplex mannitol micron particles (weight) and siRNA 
(densitometry) on different stages of the Andersen Cascade Impactor (ACI) from a pMDI 
formulation at a flow rate of 28.3 L/min.  pMDI formulations at 2 mg microparticles/1 mL 
HFA227 propellant at 25 oC and saturation pressure of propellant.  The payload of siRNA 
in microparticle is 0.025% wt/wt.  The results were based on 20 actuations and 
represented with mean ± s.d. (n=3).  AC: actuator, IP: induction port, 0-7: plate 0-7, and 
F: filter. RF, FPF, MMAD and GSD refer to respirable fraction, fine particle fraction, mass 
median aerodynamic diameter and geometric standard deviation, respectively. 

Stage Mass of microparticles (mg) Mass of siRNA (ng) 

AC 0.36 ± 0.08 80 ± 8 

IP 0.69 ± 0.06 121 ± 6 

0 (9.0-10.0 µm) 0.08 ± 0.03 34 ± 19 

1 (5.8-9.0 µm) 0.14 ± 0.04 38 ± 11 

2 (4.7-5.8 µm) 0.17 ± 0.05 62 ± 11 

3 (3.3-4.7 µm) 0.55 ± 0.16 105 ± 15 

4 (2.1-3.3 µm) 0.32 ± 0.05 76 ± 11 

5 (1.1-2.1 µm) 0.12 ± 0.05 46 ± 9 

6 (0.7-1.1 µm) 0.04 ± 0.02 24 ± 14 

7 (0.4-0.7 µm) 0.03 ± 0.01 33 ± 7 

F (<0.4 µm) 0.03 ± 0.01 12 ± 8 

RF (%) 59 ± 6 66 ± 3 

FPF (%) 50 ± 3 54 ± 3 

MMAD (µm) 3.8 ± 0.2 3.6 ± 0.1 

GSD 1.4 ± 0.1 1.8 ± 0.2 
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Table B2. siRNA Deposition on the different stages of Andersen Cascade Impactor (ACI), 
as determined by densitometry.  The 10-20 mg micron particles loaded into capsule were 
released into ACI from Rotahaler® (DPI formulation) at 25°C, 75% relative humidity, and 
a flow rate of 28.3 L/min for 4 s inspiration.  The results are represented with mean ± s.d. 
(n=3).  IH: inhaler, IP: induction port, 0-7: plate 0-7, and F: filter. ED, RF, FPF, MMAD and 
GSD refer to emitted dose, respirable fraction, fine particle fraction, mass median 
aerodynamic diameter and geometric standard deviation, respectively. 

 

 

 

 

 

 

 

 

 

 

Stage Mass of siRNA (ng) 

IH 1860 ± 90 

IP 330 ± 130 

0 (9.0-10.0 µm) 260 ± 40 

1 (5.8-9.0 µm) 215 ± 15 

2 (4.7-5.8 µm) 354 ± 9 

3 (3.3-4.7 µm) 310 ± 7 

4 (2.1-3.3 µm) 225 ± 7 

5 (1.1-2.1 µm) 81 ± 7 

6 (0.7-1.1 µm) 81 ± 4 

7 (0.4-0.7 µm) 29 ± 14 

F (<0.4 µm) 2 ± 2 

ED (%) 50 ± 2 

RF (%) 42 ± 3 

FPF (%) 39 ± 3 

MMAD (µm) 4.8 ± 0.3 

GSD 1.4 ± 0.2 
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Figure B1. The cell viability of A549 cells contacted with Lipofectamine® 2000 reagent at increasing 

concentrations as measured by the MTS assay after 48 h incubation.  Statistical analysis between the 

control group indicated at 0 µM representing 100 % cell viability and those of increasing 

concentrations was analyzed by One-Way ANOVA followed by Tukey’s Multiple Comparison Test (n < 

7). **p ≤ 0.01, *** p < 0.001, n.s.d. = not statistically different. 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER 5 

C1. Materials 

Polyester-32-hydroxyl-1-acetylene bis-MPA dendron, generation 5, 97% (Acet-

G5-OH), glutaric anhydride (GA), 2,5-dihydoxybenzoic acid (DHB), 4-Nitrophenol, and 

piperidine, were purchased form Sigma-Aldrich (St Louis, MO, USA). Doxorubicin 

hydrochloride salt (DOX•HCl) was purchased from LC Laboratories (Woburn, MA, USA). 

The H-Gly-2-Cl-Trt resin was purchased from AAPPTEC (Louisville, KY, USA). Fmoc-

glycine, Fmoc-L-leucine, Fmoc-L-Phenylalanine, N,N′-Diisopropylcarbodiimide (DIC), 

and 1-Hydroxybenzotriazole hydrate (HoBt) were purchased from Chem-Impex 

International (Wood Dale, IL, USA). 2,2,2-Trifluoroethanol (TFE) and N,N-

Diisopropylethylamine (DIPEA) was purchased from TCI Co., Ltd. (Tokyo, Japan). Acetic 

Acid (AcOH), dichloromethane (DCM), dimethylformamide (DMF), dimethyl sulfoxide 

(DMSO), ethyl ether (Et2O), methanol (MeOH) were purchased from VWR International 

(Radnor, PA, USA). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 

(EDC), N,N-Dimethylformamide (DMF), anhydrous, 99/8+%, N-Hydroxysuccinimide, 

98+% (NHS), copper (I) Iodide, and 4M Hydrogen chloride in 1,4-dioxane was purchased 

from Alfa Aesar (Haverhill, MA, USA). Acetonitrile was purchased from Avantar 

Performance Materials (Center Valley, PA, USA). Dimethyl Sulfoxide-D6 (with TMS - 0.03 

vol%) and magnesium sulfate anhydrous were purchased from EMD Millipore (Burlington, 

MA, USA). Deuterium Oxide (D, 99.9%) was purchased from Cambridge Isotope 

Laboratories, Inc. (Tewksbury, MA, USA). Sephadex LH-20 were purchased from GE 

Healthcare Bio-Science (Uppsala, Sweden). 
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C2. Synthesis of GLFG-Fmoc peptide 

Resin-GLFG-Fmoc peptide (0.5 mmol) was synthesized on a Liberty Blue 

Automated Microwave Peptide Synthesizer (CEM, Matthews, NC, USA) using a standard 

protocol for solid-phase peptide synthesis (Scheme B1). GLFG-Fmoc was cleaved from 

the resin by diluting product in a mixture of AcOH/TFE/DCM (1:1:8) stirring at room 

temperature for 0.5 h. The resin was filtered off and solution collected and diluted in 

hexane (15 x volume). The solvents were removed utilizing rotary evaporation and 

product collected giving a white solid. The GLFG-Fmoc was characterized by 1H NMR 

and MALDI-TOF. 

Fmoc-GFLG: 1H NMR (DMSO-d6400 MHz, ppm) : 0.84 (d, -CH3, 3H, Leu), 0.88 (d, -

CH3, 3H, Leu), 1.49 (t, -CH2, 2H, Leu), 1.61 (sept, -CH, 1H, Leu), 2.78 (dd, -CH, 1H, Phe), 

3.04 (dd, -CH, 1H, Phe), 3.49-3.73 (m, 4H, Gly), 4.22-4.56 (m, 4H), 7.22 (d, -CH, 4H, 

Phe), 7.31-8.18 (m, 9H) MALDI-TOF: Obtained: [M+Na]+ 637.52; [M+K]+ 653.47 

Calculated: 614.70 Da 

Scheme C1. Deprotection of GLFG-Fmoc from the resin. AcOH: acetic acid, TFE: 
Trifluoroethanol, DCM: dichloromethane. G-L-F-G: Peptide of glycine-leucine-
phenylalanine – glycine.  
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C3. Synthesis of GFLG-DOX by Conjugation of DOX to GLFG-Fmoc followed by 

deprotection of Fmoc 

Conjugation of GFLG-DOX can be seen in Scheme B2. To conjugate DOX to the 

GLFG-Fmoc peptide, 30 mg (0.05 mmol) of GLFG-Fmoc, 10.4 mg (0.075 mmol) of 4-

Nitrophenol were dissolved in 2 ml of DMF and cooled down to ~0°C using ice/water bath.  

14.37 mg (0.075 mmol) EDC in 200 L of DMF was added dropwise to the reaction and 

left to react stirring at ~0°C for 30 min. The reaction was then allowed to reach room 

temperature and allowed to react for an additional 12 h. After 12 h, the reaction was again 

cooled down to ~0°C using an ice/water bath in which 34.8 mg (0.06 mmol) of DOX 

dissolved in 500 µl of DMF and added to the reaction followed by the addition of 10 µl 

(0.06 mmol) of DIPEA. The reaction was allowed to stir for an additional 48 h. After the 

Scheme C2. A) Conjugation of DOX to GLFG-Fmoc to form DOX-GLFG-Fmoc, B) 

Deprotection of Fmoc from DOX-GLFG-Fmoc to form DOX-GLFG. EDC: (1-(3-

Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride DIPEA: N,N-

Diisopropylethylamine,  DMF: dimethylformamide. 
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reaction was competed, the solvent was removed under high vacuum.  The crude product 

was purified using a Sephadex LH-20 column (2 x 25 cm) with MeOH as the eluent. The 

fractions were checked with MALDI-TOF for the Fmoc-GFLG-DOX product, and fractions 

containing product were combined and MeOH solvent removed by rotary evaporation. 

Fmoc-GFLG-DOX MALDI-TOF was as follows: MALDI-TOF: Obtained: [M+Na+] 1,162.3; 

[M+K+] 1,178.1 Calculated: 1,139.4 Da 

The Fmoc-GFLG-DOX was deprotected using a solution of 20% piperidine in DMF 

and allowed to react for 30 min. The solvent was removed by high vacuum and 

redissolved in small amount of DMF in which the product was precipitated in cold Et2O. 

The precipitate was collected by centrifugation to form a pellet (5000 rpm, 5 min, 4°C) in 

which supernatant was removed. The excess ether was removed by airflow resulted in 

deep red product – GFLG-DOX. The GFLG-DOX product was characterized by MALDI-

TOF. GFLG-DOX: MALDI-TOF Obtained: [M+Na+] 940.3; [M+K+] 956.3 Calculated: 

917.37 Da 

C4. Conjugation of Glutaric anhydride (GA) to Acet-G5-OH dendron to form Acet-

G5-GA dendron 

 Modification of Acet-G5-OH to contain carboxyl group can be seen in Scheme B3. 

Scheme C3. The modification of Acet-G5-OH dendron to contain -COOH group by 

addition of GA to form Acet-G5-GA. Acet-G5-OH: Acetylene Generation 5 Bis-MPA 

polyester dendron, DIPEA: N,N-Diisopropylethylamine,  DMF: dimethylformamide. 
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20.19 mg (5.5 µmol) Acet-G5-OH was reacted with 62.76 mg (550.0 µmol) of GA with 

104.8 µl (616.2 µmol) of DIPEA in 1.5 ml of DMF and allowed to stir at room temperature 

for 24 h to form Acet-G5-GA dendron. Following the reaction, the Acet-G5-GA product 

was purified by the removal of DMF solvent by vacuum followed by dialysis against DMSO 

using Spectra/Por® 7 RC membrane dialysis tubing (MWCO = 1 kDa, Spectrum 

Laboratories, Inc., Rancho Dominguez, CA, USA) for two days. The product was removed 

from dialysis and DMSO solvent removed by vacuum, redissolved in 1xPBS (pH = 7.4) 

and filtered using Amicon Ultra-15 centrifugal filter (NMWL = 3,000, MilliporeSigma, 

Burlington, MA, USA) against 1xPBS followed by DI water. The product was then 

collected from the Amicon filter, frozen, and lyophilized in freeze dryer (Labconco, Kansas 

City, MO, USA) to obtain white powder. The Acet-G5-GA product was characterized by 

MALD-TOF and 1H NMR (Figure C1). Acet-G5-GA: 1H-NMR (D2O, 400MHz, ppm): δ 

4.29-4.23 (m, 124H), 2.37 (t, 64H, J=7x(2)), 2.17 (t, 64H J=7.2x(2)), 1.78 (t, 64H 

J=7.2x(2)) 1.30-1.24 (m, 93H). MALDI-TOF MS: 7329.0. 
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Figure C1. A) Chemical structure of Acet-G5-OH and Acet-G5-GA and the 

corresponding B) 1H NMR and C) MALDI-TOF spectra.  

Scheme C4. Conjugation of DOX-GLFG to Acet-G5-GA dendron to form Acet-G5-

GA-GFLG-DOX dendron.  EDC: (1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide 

hydrochloride NHS: N-Hydroxysuccinimide, DMF: dimethylformamide. 
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C5. Azide/Alkyne Click Chemistry of Acet-G5-OH and N3-G5-OH dendrons to form 

(OH)32-[G5]-[G5]-(OH)32 dendrimer.   

 Formation of Polyester dendrimer from dendrons using click chemistry is 

described in Scheme B5.  

 

5.33 mg (1.42 µmol) of Azide (Polyester bis-MPA dendron, 32 hydroxyl, 1 azide, 

generation 5, 95%) (N3-G5-OH) and 5.01 mg (1.37 µmol) of Acetylene (Polyester-32-

hydroxyl-1-acetylene bis-MPA dendron, genration 5, 97%) (Acet-G5-OH) were added 

with 8.53 mg (44.79 µmol) of copper (I) Iodide  and 1.16 µl (6.82 µmol) of N,N-

Diisopropylethylamine (DIPEA) with 40 µl of degassed, anhydrous DMF and 400 µl of 

acetonitrile and put on thermal mixer (ThermoFisher Sceintific) shaking at 1400 rpm,  

80°C, overnight followed by 50°C for an additional 24 h. After the additional 24 h, the 

acetonitrile was removed by airflow followed by the removal of DMF by high vacuum. The 

product was then dissolved in 250 µl of 1xPBS (pH 7.4) and centrifuged to pellet excess 

copper iodide (1400 rpm, 2 min at 20°C), then loaded into 0.7 x 50 cm Econo-Column 

Chromatography Column (Bio-Rad) containing Bio-Gel P-10 Gel (2 g) in which fractions 

were collected and analyzed by MALDI-TOF. Fractions were combined, and the final 

Scheme C5. Conjugation of HO-G5-OH dendrimer from to Acet-G5-OH and N3-G5-

OH dendrons utilizing copper click chemistry. DIPEA: N,N-Diisopropylethylamine, 

DMF: dimethylformamide, ACN: Acetonitrile. 
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product characterized by MALDI-TOF (Figure C2). OH)32-[G5]-[G5]-(OH)32 dendrimer: 

MALDI-TOF MS, mass (m/z): 7393.9 LS ζ-potential: -31 ± 7 mV 

 

  

Figure C2. MALDI-TOF of purificed HO-G5-OH dendrimer after size exclusion 

chromatography. The expected MW (7393.9) as determined found for dendrimer while 

only very insignificant amount of dendrons remained in the product (Acet-G5-OH – 

3634.7, N3-G5-OH – 3770.8).  
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APPENDIX D 

SUPPORTING INFORMATION FOR CHAPTER 6 

 

Scheme D1. A) Synthesis of hydrazine bond to the G4SA PAMAM dendrimer. TBC 

is added to G4SA by addition of NMM and IBCF in DMSO/DMF (10/90, v/v) 

followed by Boc deprotection by exposure to TFA/DCM (80/20, v/v). B) DOX 

addition by hydrazone bond was completed with TFA as acid catalyst and MeOH 

as solvent. G4SA: Generation 4 PAMAM succinamic acid surface dendrimer 

DMSO: dimethylsulfoxide DMF: dimethylformamide TBC: tert-butyl carbazate 

NMM: N-Methylmorpholine IBCF: isobutyl chloroformate TFA: trifluoroacetic acid 

DCM: dichloromethane MeOH: methanol DOX: doxorubicin. 
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Figure D1. A) The chemical structure and corresponding 1H NNMR and B) the 

MALDI-TOF of G4SA, G4SA-TBC, G4SA-hyd, G4SA-hyd-DOX.  
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Figure D2. Puromycin kill curve. 4T1 cells were exposed to various concentrations of 

puromycin (0-10 µg/ml) for 48 hours to determine the minimum amount of puromycin 

to kill all 4T1 cells.  
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Figure D3. % Average body weight of mice for A) first experimental group in which all 

drugs administered were given pulmonary route and B) second experimental group in 

which DDOX and DDOX+PLX groups were given pulmonary route and PLX# was given 

IV route.   
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Figure D4. Evaluation of lung tumor burden by in vivo imaging of mice near lung region 

using IVIS. A) & C) % Tumor growth rate over time. Day 7 total flux from in vivo IVIS 

images was normalized to 100% for each mouse. B & D) The corresponding % Tumor 

growth in vivo on Day 15 – final day of experiment imaged on two sides for each group 

as evaluated from IVIS images, *p<0.05. All drugs were given via pulmonary route 

except PLX# group seen in D) in which PLX was delivered IV route.  
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Table D1. p-values calculated after One-Way ANOVA by Tukey’s Multiple Comparison 
(n≥6) for % tumor growth seen on Day 15 post tumor inoculation. 

 
 

 

 

 

 

 

 

Group p-value  

Vehicle vs. PLX 0.7766 

Vehicle vs. DOX 0.8260 

Vehicle vs. DOX+PLX 0.2276 

PLX vs. DOX 0.2762 

PLX vs. DOX+PLX 0.0329 

DOX vs. DOX+ PLX 0.6592 

DDOX vs. DDOX+PLX 0.2681 

DDOX vs. PLX# 0.9629 

DDOX+PLX vs. PLX# 0.1798 
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Table D2. IC50 values of drugs when tested against 4T1-WT cells line. This was 
conducted after 48 h incubation and measured by MTT. DOX= doxorubicin, DDOX= 
PAMAM G4COOH-DOX conjugate, DOXTPP = Triphenylphosphonium-modified 
doxorubicin, DDOXTPP = PAMAM G4COOH-DOXTPP conjugate. 

 

  

Drug IC50 Value (µM) 

DOX 1.12 

DDOX 0.96 

DOXTPP 8.53 

DDOXTPP 4.40 

Figure D5. % Cell viability (measured by MTT) of doxorubicin and modified doxorubicin 

formulations against 4T1-WT cells after 48-hour incubation. DOX= doxorubicin, DDOX= 

PAMAM G4COOH-DOX conjugate, DOXTPP = Triphenylphosphonium-modified 

doxorubicin, DDOXTPP = PAMAM G4COOH-DOXTPP conjugate. 
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 Lung cancer remains the leading cause of cancer-related deaths in the United 

States. Secondary lung tumors metastasized from other cancer sites also remains highly 

prevalent, in which most metastatic tumors cannot be cured with existing therapies. 

Chemoresistance (multi drug resistance – MDR) that develops intrinsically or acquired is 

one of the key factors leading to fatality in these patients. MDR develops form a variety 

of resistance mechanisms that can occur consecutively or concurrently, therefore, making 

most current treatments unsuccessful. Current therapies have known to slow tumor 

growth, but rarely provide a cure. Immunotherapy has seen some promise, including the 

use of checkpoint inhibitors, when other therapies have not proven beneficial. However, 

only a small fraction of tumor types and patients have benefited from this type of 

treatment, and some toxicity has been stated. Therefore, establishing new types of 

treatments, as a single therapy or combination therapy, that can i) increase the rate of 

survival in patients suffering at early or late stages (when MDR and metastasis have 

developed) of lung cancer, and ii) reduce toxicity and adverse side effects of treatments 

is of great importance in pulmonary oncology.  
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In this work we describe alternative treatment modalities that suggest their 

potential to address MDR and prolong the rate of survival in patients suffering from 

primary and secondary lung tumors. A combination of local lung targeting (high payload 

to target side and reduced systemic toxicity), nanocarriers (to modulate interactions with 

physiological environment) intracellular organelle targeting (to repurpose cytoreductive 

therapies), siRNA as therapeutic agent (to target apoptotic pathways), and macrophage 

repolarization immunotherapy (to modulate the tumor microenvironment) are reported. 

We describe the development mitochondrial-targeted dendrimer nanocarriers (DNCs) as 

a platform for the repurposing of chemotherapeutics, the development of siRNA/TPP-

DNC complexes (TPP-dendriplexes) as a platform for pulmonary delivery of siRNAs, the 

development of asymmetric dendrimers with a chemotherapeutic and varying surface 

functionalities to enhance tumor targeting and penetration, and address the impact of 

local pulmonary administration of tumor associated macrophage (TAM)-targeting 

immunotherapy. Overall, we conclude that all these strategies described above have the 

potential capability to address issues resulting from MDR and for the treatment of primary 

and secondary lung tumors. 



www.manaraa.com

248 
 

 
 

AUTOBIOGRAPHICAL STATEMENT 

ELIZABETH BIELSKI 

 

Elizabeth Bielski received her Bachelor of Science in Biomedical Physics Honors 

with University Honors and Summa Cum Laude from Wayne State University (Detroit, MI, 

USA) in 2011, and her Master of Science in Biomedical Engineering from Wayne State 

University (WSU) in 2012. In the Fall of 2012 she joined the Chemical Engineering and 

Materials Science Department at WSU to pursue her PhD in Chemical Engineering under 

the guidance of Dr. Sandro da Rocha working on developing novel therapies for the 

treatment of primary and secondary lung tumors. From October 2014-July 2015, she 

traveled to Brazil to work with Dr. Reinaldo Bazito in the Chemistry Department at 

University of São Paulo (São Paulo, Brazil) learning chemical synthesis of polyester-

based dendrons and dendrimers. She finished up her research work at the Department 

of Pharmaceutics at Virginia Commonwealth University (Richmond, VA, USA) starting in 

January 2016. During this time, she has authored or co-authored 6 publications in peer-

reviewed journals (2 first-author) and has 4 more papers in preparation. She has also 

received numerous scholarships, awards, and recognitions including: Graduate 

Professional Scholarship from 2013-2014, Outstanding Graduate Student Award in 2014, 

Graduate Student Professional Travel Award (2013, 2015) from College of Engineering 

at WSU, and the Student Research Award in 2016 at the NanoDDS’16: Annual 

Nanomedicine and Drug Delivery Symposium by the Society for Biomaterials Drug 

Delivery Special Interest Group. She has accepted a ORISE Fellowship position at the 

Food and Drug Administration (FDA) to join the Division of Therapeutic Performance 

staring in August 2018.  


	Drug Delivery Strategies For The Treatment Of Advanced Lung Cancer And Various Lung Metastases
	Recommended Citation

	tmp.1544546168.pdf.pXDSR

